

Mastering GitLab 12

Implement DevOps culture and repository management
solutions

Joost Evertse

BIRMINGHAM - MUMBAI

Mastering GitLab 12
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Drashti Panchal
Senior Editor: Rahul Dsouza
Technical Editor: Komal Karne
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Aparna Bhagat

First published: August 2019

Production reference: 2201219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-128-2

www.packt.com

https://www.packtpub.com/

For my family, who supported me throughout the entire effort of writing this book.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Joost Evertse is an all-round professional with over 20 years of experience in IT in the
financial and telecom sectors. He has worked for big and small organizations and has lived
in different worlds, including Unix, Oracle, Java, and Windows. Creating order from chaos
has been a big focus during his system-engineering years. After 10 years of system
administration, he moved into software development and started using CI/CD tools,
including GitLab.

At the end of 2016, he started at a significant financial company in the GitLab team, shifting
his focus more toward the entire CI/CD pipeline, with the mission of making the CI/CD
platform more stable and highly available. His team eventually migrated GitLab to a
private cloud and improved release cycles.

About the reviewer
Orlando Monreal is a software engineer with over 12 years of experience, currently
working at HCL Technologies Mexico, as part of the Source Code Management team in his
project account. He has worked with GitLab applications as an administrator and contact
for application support queries, handling upgrade processes and troubleshooting
performance and configuration-related issues with the application.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Install and Set Up GitLab On-Premises or
in the Cloud
Chapter 1: Introducing the GitLab Architecture 8

Technical requirements 9
The origins of GitLab 9
Exploring GitLab editions – CE and EE 10
The core system components of GitLab 11

NGINX 12
Debugging NGINX 12

Unicorn 13
Debugging Unicorn 13

Timeouts in Unicorn logs 13
Unicorn processes disappear 14
Other kinds of errors or 100% CPU load 14

Sidekiq 15
Debugging Sidekiq 16

Sidekiq processes disappear 16
A Sidekiq process is seemingly doing nothing 16
Other kind of errors or 100% CPU load 17

GitLab Shell 18
Debugging GitLab Shell 18

Redis 20
Basic data operations in Redis 20

Gitaly 22
Debugging Gitaly 24

GitLab Workhorse 25
Debugging GitLab Workhorse 25

Database 26
Debugging PostgreSQL 29

GitLab CI 29
Pipelines and jobs 31

GitLab Runners 32
Issues with the old runner 33
Switching to Go 33

Cloud native 36
Summary 37
Questions 37
Further reading 38

Table of Contents

[ii]

Chapter 2: Installing GitLab 39
Technical requirements 39
Installing GitLab using omnibus packages 40

Omnibus structure 40
Project definition 41
Individual software definitions 41
A GitLab configuration template 41
Chef components 41
Runit recipe 42
Tests 42
gitlab-ctl commands 42

Running the installer 43
Browsing to the external URL and login 44
Upgrade using the omnibus-gitlab package 44

Running from source 44
Operating system – Debian 10 45

Required basic software packages 45
Required programming languages 47

Ruby 47
Go 48
Node.js 48

System users 49
SQL database 50
Redis memory database 52
GitLab 53
Installing GitLab Shell 56
Installing GitLab-Workhorse 56
Installing Gitaly 56
Initializing the database and activating advanced features 57
Final steps for preparing the system 57
Preparing to serve 58

Compiling GetText PO files 58
Compiling assets 59
Starting your GitLab instance 59

NGINX 60
Using it from Docker 61

Running the image directly 62
Configuring GitLab after startup 63
Starting the container with configuration settings as input 64
Upgrading GitLab 65
Run GitLab CE on a different IP address 66
Debugging the container 66

Install GitLab using Docker Compose 66
Updating GitLab using Docker Compose 67

Deploying GitLab using Kubernetes 68
GitLab Runner Helm chart 68

Deploying of a GitLab Runner to Kubernetes 69
GitLab Helm chart 69

Deploying GitLab to Kubernetes 70

Table of Contents

[iii]

Monitoring the deployment 71
Initial login 71

Outgoing email 72
Updating GitLab using the Helm chart 72
Uninstalling GitLab using the Helm chart 73

Creating droplets on DigitalOcean 73
Summary 76
Questions 76
Further reading 77

Chapter 3: Configuring GitLab Using the Web UI 78
Technical requirements 78
Configuring GitLab settings at the instance level 79

Menu options 80
Monitoring 80
Messages 81
System hooks 82

Plugins 83
Applications 83
Abuse reports 84
License 85
Kubernetes 86
Push rules 86
Geo 86
Deploy Keys 87
Service templates 87
Appearance 88
Settings 89

General 89
Visibility and access controls 89
Account and limit 90
Diff limits 90
Sign-up restrictions 90
Sign-in restrictions 91
Terms of service and privacy policy 92
External authentication 92
Web Terminal 92
Web IDE 92

Integrations 93
Elasticsearch 93
PlantUML 94
Third-party offers 94
Snowplow 95

Repository 95
Repository mirror 95
Repository storage 95
Repository maintenance 96

Templates 97
CI/CD 97

Table of Contents

[iv]

Auto DevOps settings 97
Shared runner settings 98
Container registry 99

Reporting 99
Spam and anti-bot protection 99
Abuse reports 99
Error reporting and logging 100

Metrics and profiling 100
Metrics – InfluxDB 100
Metrics – Prometheus 100
Profiling – Performance Bar 101
Usage statistics 101
Pseudonymizer data collection 101

Network 102
Performance optimization 102
User and IP rate limits 102
Outbound requests 102
Geo 102

Preferences 102
Email 102
Help page 103
Pages 104
Real-time features 105
Gitaly 105
Localization 105

Configuring GitLab settings at the group level 105
Configuring GitLab settings at the project level 107

General 107
Naming, topics, avatar 108
Visibility, project features, permissions 109
Merge requests 109

Summary 111
Questions 111
Further reading 111

Chapter 4: Configuring GitLab from the Terminal 112
Technical requirements 112
Configuring omnibus and GitLab installations from the terminal 113
Configuring source installations 114

GitLab app settings 114
Storing big files 117

Using object storage 118
GitLab pages 120
Mattermost 121
Gravatar 121
Sidekiq 122

GitLab Registry 122
GitLab CI settings 123

Table of Contents

[v]

Auth settings 124
Advanced settings 126
Rack Attack 128

Reconfiguring GitLab Docker containers 129
Changing GitLab in a Kubernetes environment 130

Basic configuration 130
Configuring TLS 130
Configuring outgoing emails 131
Other settings 131

Summary 132
Questions 132
Further reading 133

Section 2: Migrating Data from Different Locations
Chapter 5: Importing Your Project from GitHub to GitLab 135

Technical requirements 136
Using the GitHub integration feature 136

Preparing GitHub for export 137
Preparing GitLab for import 140
Running the import 141

Using a GitHub token 144
Preparing GitHub for export 144
Running the import 146

Using a GitLab rake task 148
Preparing GitLab for import 148
Running the import 148

Summary 151
Questions 151
Further reading 151

Chapter 6: Migrating from CVS 152
Technical requirements 153
CVS versus Git 153

Filesets versus changesets 154
Git branching 155
Creating repositories 156
Atomic operations 157
Object naming or referencing versions 157
Keyword substitution 157
Binary blobs 158
Amending commits 159
A central repository 160
Accompanying toolset 160
Detecting file renames 161
Commit before merge 161

Table of Contents

[vi]

Preparing to migrate from CVS to Git 161
Preparing for a conversion using cvs-fast-export 162
Preparing for a conversion using cvs2git 164

Running the conversion 165
Converting data using cvs-fast-export 165
Converting data using cvs2git 167

Cleaning up after migration 168
Summary 169
Questions 169
Further reading 170

Chapter 7: Switching from SVN 171
Technical requirements 171
The difference between SVN and Git 172

Security and access control 173
Space requirements and references 174
Branching 175
Handling binaries with SVN and Git 176

Mirroring SVN and GIT 178
No sync, just convert 182

Using svn2git to migrate in one cut 183
Summary 185
Questions 186
Further reading 186

Chapter 8: Moving Repositories from TFS 187
Technical requirements 187
TFS versus Git 188
Centralized or decentralized 189

Handling changes 189
Branching and merging capacity 190
History 191
Traceability 192
File handling 192

The git-tfs tool 193
Preparing to migrate 194

Summary 200
Questions 201
Further reading 201

Section 3: Implement the GitLab DevOps Workflow
Chapter 9: GitLab Vision - the Whole Toolchain in One Application 203

Technical requirements 203
The Agile Manifesto 204

Table of Contents

[vii]

The initial model – waterfall 204
Royce's model 206
The sashimi model 207
The V-model 208
DSDM 209

Timeboxing 210
MoSCoW 211

Scrum 212
Crystal methods 213

XP 214
Fine-scale feedback 214

Planning game 215
Release planning 215
Iteration planning 218

Pair programming 219
Test Driven Development 220

Continuous processes 222
Continuous integration 222
Refactoring 223
Short iterations 224

Everybody owns the code 224
Shared understanding 224
Coding standards 225
Simple design 225
System metaphor 225

The DevOps movement 226
History of the movement 227

Four Quadrant Model 228
Four levels of competence 230

The toolchain 231
Summary 235
Questions 235
Further reading 236

Chapter 10: Create Your Product, Verify, and Package it 237
Technical requirements 237
The GitLab workflow 238
DevOps phase – manage your ideas 239

Cycle analytics 239
DevOps phase – plan your feature 241

Issues 241
Content 241
Status of the issue 241
Meta information 242

Discussions 243
Milestones 246
Epics 248

Table of Contents

[viii]

Time tracking 249
Quick actions 251
The Project Issue board 252
Todos 255

DevOps phase – create it 256
Projects and groups 256
Snippets 260
Web IDE 261
Wiki 261

Protected branches 263
Merge requests 265

DevOps phase – verify your product 270
Code Quality reports 271
Review apps 273

DevOps phase – package it for use 278
GitLab container registry 278

Summary 281
Questions 281
Further reading 281

Chapter 11: The Release and Configure Phase 282
Technical requirements 282
Continuous Deployment 283
Auto DevOps 289

Configuring Auto DevOps 289
Build step 291
Code quality scan 292
Container scanning 292
Dependency scanning 294
License management 294
Static application security testing (sast) 295
The final test step 295
Production 296
Performance 299

Summary 300
Questions 301
Further reading 301

Chapter 12: Monitoring with Prometheus 302
Technical requirements 302
Setting up Prometheus 303

Using an external Prometheus host 309
Enabling the external dashboard link 311

Customizing monitoring 311
The static analysis of security vulnerabilities 313
Dynamic Application Security Testing 317

Table of Contents

[ix]

Dependency checking 320
Summary 324
Questions 325
Further reading 325

Chapter 13: Integrating GitLab with CI/CD Tools 326
Technical requirements 326
Using Jira with GitLab 327
Connecting Jenkins to GitLab 334
Integrating with Mattermost 344
Using webhooks for events 354
Summary 359
Questions 360
Further reading 360

Section 4: Utilize GitLab CI and CI Runners
Chapter 14: Setting Up Your Project for GitLab Continuous Integration 362

Technical requirements 363
Pipelines 363
Jobs 368
Creating .gitlab-ci.yml 369
Configuring a runner 370

GitLab Runner features 371
Summary 374
Questions 374
Further reading 374

Chapter 15: Installing and Configuring GitLab Runners 375
Technical requirements 375
The Runner client architecture 376

Basic architecture 376
Creating a basic Runner with the shell executor 379

Installing Runner on Linux 380
Using a package manager 380
Using a manual installation 382
Updating a manually installed runner binary 383

Installing on Mac 383
The manual way of installing a runner 384
Installing and using the Homebrew package manager 384
Updating a manually installed runner binary 384

Installing on Windows 385
Registering a runner 386

The interactive way of registering a runner 386
The non-interactive way of registering a runner 387

Running the nightly version 389

Table of Contents

[x]

Summary 390
Questions 390
Further reading 390

Chapter 16: Using GitLab Runners with Docker or Kubernetes 391
Technical requirements 392
Runner client architecture 393
Creating your own Dockerized GitLab Runner 395
Using a prebuilt Docker container to deploy GitLab Runners 401
Using a Kubernetes cluster to spawn GitLab Runners 404
Summary 408
Questions 408
Further reading 408

Chapter 17: Autoscaling GitLab CI Runners 409
Technical requirements 410
Runner client architecture 410
Setting up the environment 412

Preparing a bastion host 412
Deploying the GitLab Runner software 412
Installing Docker Machine 413

Configuring the Runner 414
Off-peak time mode configuration 414
Distributed runners caching 415

Setting the cache globally 415
Setting the cache at the project level 415

Distributed container registry mirroring 416
Installing and running a proxy container registry and a caching server 417

Proxy container registry 417
Caching server 418

Creating an S3 bucket in Amazon Web Services 418
Creating your own MinIO server 419

Scaling your runners 420
Using Docker Machines with a local VirtualBox instance 420
Using docker machines that have been created on Amazon Web Services
(EC2) 421

Summary 423
Questions 424
Further reading 424

Chapter 18: Monitoring CI Metrics 425
Technical requirements 426
Enabling monitoring for Runners 426
Editing the GitLab Runner configuration file 428
Runner business logic metrics 433

Key metrics to watch 433

Table of Contents

[xi]

General process metrics 438
Key metrics to watch 439
Alert management 443

Summary 448
Questions 448
Further reading 449

Section 5: Scale the Server Infrastructure
(High Availability Setup)
Chapter 19: Creating a Basic HA Architecture Using Horizontal Scaling 451

Technical requirements 452
The underlying architecture of this solution 453

Amazon services 455
Elastic compute cloud (EC2) 455
Classic load balancer 456
Virtual private cloud and subnets 456
SGs 456

Terraform 457
Installing Terraform 457

Ansible 458
Installing the Ansible Terraform provider 458
Starting with the code 459

vpc.tf 460
subnet.tf 461
instance.tf 462
ansible_host.tf 463
route_table.tf 465
security_group.tf 465
variable.tf 466
keypair.tf 467
lb.tf 468
providers.tf 470

Preparing to run Terraform to deploy the virtual hardware 470
Running the deployment 471

Setting up the bastion hosts 473
Configuring the database nodes 474

Contents of the gitlab.rb.postgres.j2 template 474
Configuring the consul nodes 477

Contents of gitlab.rb.consul.j2 477
Configuring the PgBouncer node 478

Contents of gitlab.rb.pgbouncer.j2 478
The Redis configuration 480

Contents of gitlab.rb.redis.j2 480
Connecting the shared filesystem 481

Contents of nfs_exports.j2 482

Table of Contents

[xii]

Setting up the application servers 482
Contents of gitlab.rb.j2 482
Running all the Ansible playbooks 484

Summary 488
 Questions 488
 Further reading 489

Chapter 20: Managing a Hybrid HA Environment 490
Technical requirements 491
The basic architecture of this solution 491
A renewed Terraform configuration 493

instance.tf 493
ansible_host.tf 495

Splitting application components into frontend and middleware
tiers 498

Splitting Sidekiq from the frontend 498
Contents of gitlab.rb.middleware.j2 498

Creating a monitoring instance 500
Contents of gitlab.rb.prometheus.j2 500

Creating a monitoring dashboard with Grafana 501
Contents of gitlab.rb.grafana.j2 501

Connecting the shared filesystem 502
Contents of the gitlab.rb.gitaly.j2 file 502

Changes in Ansible files 503
Script enhancements 504
Summary 505
Questions 505
Further reading 506

Chapter 21: Making Your Environment Fully Distributed 507
Technical requirements 507
The basic architecture of this solution 508
Performing changes to the Terraform configuration 510

instance.tf 510
ansible_host.tf 512

Splitting more application components 514
The third application server for Git SSH 515

Contents of gitlab.rb.frontend_ssh.j2 515
The middleware layer – Sidekiq 516

The ASAP Sidekiq instance 516
Contents of gitlab.rb.sidekiq_asap.j2 517

The real-time Sidekiq instance 517
Contents of gitlab.sidekiq.realtime.j2 518
The pipeline Sidekiq instance 518
Contents of gitlab.sidekiq.pipeline.j2 519
The normal Sidekiq instance 519

Table of Contents

[xiii]

The clustered Redis/Sentinel configuration 519
Contents of gitlab.rb.redis-cluster.j2 520

Changes in Ansible files 521
Script enhancements 522
Summary 523
Questions 523
Further reading 523

Chapter 22: Using Geo to Create Distributed Read-Only Copies of
GitLab 524

Technical requirements 524
The basic architecture of this solution 525
Preparing the infrastructure 526

The root module explained – main.tf 528
Utilizing the keypair module – modules/services/keypair/main.tf 529
Variables for the keypair module – modules/services/keypair/vars.tf 530
Outputs from the keypair module – modules/services/keypair/output.tf 530
Explaining the GitLab module 530

The main module file – modules/services/gitlab/main.tf 530
The variable file – modules/services/gitlab/vars.tf 532
The outputs for the module – modules/services/gitlab/outputs.tf 533

Setting up Geo 534
Installing the GitLab software and license 534

Contents of gitlab.rb.j2 535
Preparing the database replicas 535

Contents of gitlab.rb.primary.j2 536
Contents of gitlab.rb.primary.j2 537

Changing the SSH key lookup method to the database 538
Adding the secondary node via the web UI 538

Activating hashed storage 539
Checking the status of the secondary node 541

Summary 542
Questions 542
Further reading 542

Assessments 543

Other Books You May Enjoy 552

Index 555

Preface
GitLab is a tool to enhance the workflow of teams and enable parts of the DevOps life cycle.
It started out as a tool only for source code management, but today, GitLab can offer help
ranging from managing an initial idea to building and testing source code, all the way from
development to production.

You'll learn ways to use all of the features available in GitLab to enhance your business via
the integration of all phases of the development process. You'll benefit from lower friction
by creating one platform on-premises or in the cloud, increase collaboration, and drive
competitive advantage with more efficient operations.

Who this book is for
This book is for developers and DevOps professionals who want to master the software
development workflow in GitLab and boost their productivity by putting their teams to
work on GitLab via an on-premise installation or cloud-based infrastructure.

What this book covers
Chapter 1, Introducing the GitLab Architecture, provides a short introduction to the company
and the people that created the product, along with a high-level overview of GitLab and its
components.

Chapter 2, Installing GitLab, shows you how to install and configure GitLab via several
different methods. This can be done from scratch, or via the Omnibus installer. Special
attention is given to Docker and Kubernetes when outlining containerized solutions.
Finally, a cloud installation via the DigitalOcean infrastructure is taken as an example.

Chapter 3, Configuring GitLab Using the UI, explains the options in the GitLab web UI that
can be configured after installation. This chapter also covers the administration pages
where these instance-level options are situated.

Chapter 4, Configuring GitLab from the Terminal, looks at the different ways of configuring
GitLab. The first approach is by using the Omnibus package installer provided by GitLab,
which automates most of the installation. The chapter continues with configuring a source
installation. Configuring Docker containers and managing a Kubernetes installation are
also covered.

Preface

[2]

Chapter 5, Importing Your Project from GitHub to GitLab, outlines the process of migration
from GitHub via a hands-on lab. It starts by exploring settings that should be altered in
your GitHub project. After this, the settings necessary in GitLab to prepare an import are
shown, and finally, the procedure for running the import is addressed.

Chapter 6, Migrating from CVS, begins with a comparison of the fundamentally different
systems of CVS and Git. It then provides directions on preparing for migration. Actual
conversion is addressed, as is the cleaning up of artifacts not needed anymore.

Chapter 7, Switching from SVN, begins by explaining the subtle and not-so-subtle
differences between SVN and Git. The reader is shown how to migrate using two different
methods: mirroring with SubGit and using the svn2git tool.

Chapter 8, Moving Repositories from TFS, first deals with the differences between TFS and
Git. Subsequently, the act of migrating information from a TFS project to Git is shown via
the use of the git-tfs tool.

Chapter 9, GitLab Vision - the Whole Toolchain in One Application, explains GitLab's vision of
providing the whole DevOps toolchain to the developer, looking at the origins of XP and
the Agile manifesto. The emergence of the DevOps paradigm is also explored, and the
toolchain that GitLab provides is summarized.

Chapter 10, Create Your Product, Verify It, and Package It, shows how the product vision for
GitLab and its workflow is centered around the idea of providing a complete toolchain to
create a product. This chapter focuses on the different phases and explains the relevant
concepts with examples.

Chapter 11, The Release and Configure Phase, discusses one of the big features of GitLab: the
ability to offer the complete journey to production with different, easy-to-design stages.
This way, you can create different environments and, ultimately, automate the whole
pipeline for a product.

Chapter 12, Monitoring with Prometheus, handles ways of monitoring your GitLab
environment by using the built-in Prometheus feature and default scripting languages. The
second part of this chapter explains the different security tests that are available.

Chapter 13, Integrating GitLab with CI/CD Tools, explains how, although GitLab aims to
provide a complete toolchain in the real world, there will always be a need for integration.
This chapter explains some of the bigger possible integrations that are configurable out of
the box. It closes with a section on how webhooks provide a general way to consume
information from GitLab.

Preface

[3]

Chapter 14, Setting Up Your Project for GitLab Continuous Integration, describes GitLab CI
concepts that are present on the application server and can be fine-tuned and customized
per project. The second part of the chapter mainly focuses on how to get your project ready
to use these CI concepts and set up a runner for it to use.

Chapter 15, Installing and Configuring GitLab Runners, explains the way GitLab runners
work, by installing them. The next step is creating an example project and building it with a
shell executor.

Chapter 16, Using GitLab Runners with Docker or Kubernetes, examines the architecture of
Docker-based runners and runners using the Kubernetes API, using the same examples as
in earlier chapters.

Chapter 17, Autoscaling GitLab CI Runners, demonstrates the architecture of runners using
autoscaling. The number of runners required will decrease and increase based on demand.
The example shown uses VirtualBox and Amazon Web Services (AWS) to deploy
instances.

Chapter 18, Monitoring CI Metrics, deals with monitoring specific GitLab runners. Using a
lab, we demonstrate how to enable monitoring inside the runner. After this introduction,
the specific functional and system metrics are explained.

Chapter 19, Creating a Basic HA Architecture by Using Horizontal Scaling, visualizes the way
in which different components interact. Secondly, the preparation of databases is shown, as
well as several all-in-one application servers. Finally, the shared filesystem for repositories
and Redis caching in this high availability (HA) setup is explained. We will use Terraform
and Ansible to create the demonstration environment.

Chapter 20, Managing a Hybrid HA Environment, builds on the earlier architecture of
horizontal HA, but continues to grow in complexity. The main difference is that the
application servers combined several components that are now split into new tiers.

Chapter 21, Making Your Environment Fully Distributed, builds on earlier chapters. A fully
distributed architecture aims to create more fault tolerance by again splitting components
into new tiers. There is now an SSH node and several sidekiq tiers.

Chapter 22, Using Geo to Create Distributed Read-Only Copies of GitLab, starts with an
explanation of the GEO product, which is part of the Enterprise Edition license. Using the
same tools as in earlier chapters from Section 5 of this book 'Scale the Server Infrastructure
(High Availability Setup)', we will explain how to set up GEO to create replication between
two different geographical locations.

Preface

[4]

To get the most out of this book
To get the most out of this book, you should have access to a Linux or macOS machine,
have an internet connection, and have Amazon AWS, Google, and Microsoft Azure
accounts. These are all necessary to run the examples.

Some basic IT knowledge is necessary to read this book. The subjects you need experience
in are as follows:

Linux
Shell scripting
Basic programming skills in Ruby and JavaScript
A basic understanding of Docker containers
A basic understanding of using Terraform to create infrastructure as code
A basic understanding of Ansible

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-GitLab-12. In case there's an update to the code, it will be
updated on the existing GitHub repository.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12

Preface

[5]

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action
Visit the following link to see the code being executed:

http://bit.ly/2KirIoO

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789531282_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's continue with installing web documents in /usr/local/www."

A block of code is set as follows:

server {
listen 8080;
server_name localhost;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

server {
listen 8080;
server_name localhost;

Any command-line input or output is written as follows:

$mkdir /usr/local/www
$chmod 755 /usr/local/www
$cd /usr/local/www

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
http://bit.ly/2KirIoO
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531282_ColorImages.pdf

Preface

[6]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You can do this by clicking the Choose File button near the Logo section."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Install and Set Up

GitLab On-Premises or in the
Cloud

This section will give you a solid understanding of GitLab deployment options and GitLab
component architecture, leaving you able to install and configure GitLab on-premises and
in the cloud.

This section comprises the following chapters:

Chapter 1, Introducing the GitLab Architecture
Chapter 2, Installing GitLab
Chapter 3, Configuring GitLab Using the Web UI
Chapter 4, Configuring GitLab from the Terminal

1
Introducing the GitLab

Architecture
Understanding the context of the GitLab project will help us to appreciate the choices that
were made with regard to the design of the GitLab workflow. The GitLab project started
out as a small, open source project, and has grown to be an organization of 400 people and
thousands of volunteers. It is currently available in two versions, a free Community
Edition (CE) and an Enterprise Edition (EE) with a proprietary license. There are several
tiers of support for the enterprise version. Although it is proprietary licensed, the source
code for that version is publicly available from GitLab.

To master GitLab, it is necessary to have a solid understanding of its individual
components. In this chapter, we will look at the basic components of a GitLab installation,
paying special attention to GitLab Continuous Integration (CI) and the accompanying
runners. As the different components can be distributed across servers or even cloud
providers, we will also provide an overview of those providers and how GitLab views
them.

In this chapter, we will be covering the following topics:

The origins of GitLab
GitLab CE or EE
The core components of GitLab
GitLab CI
GitLab Runners
Cloud native

Introducing the GitLab Architecture Chapter 1

[9]

Technical requirements
To follow along with the instructions in this chapter, please download the Git repository
with examples, commands and instructions, available at GitHub: https://github.com/
PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01. Look in the Readme.md
file for a general explanation of the content of the directory.

To run or install software used in this chapter you need one of the following platforms:

Debian 10 Linux codename 'Buster'
CentOS 7.x or RHEL (Red Hat Enterprise Linux) 7.x
macOS Sierra or later

The origins of GitLab
The story began in 2011, when Dimitri Zaporozhets, a web programmer from Ukraine, was
faced with a common problem. He wanted to switch to Git for version management and
GitHub to collaborate, but that was not allowed in his company. He needed a tool that did
not hinder him in developing code and was easy to use. Like many developers, he had
issues with the collaboration tool that he was obliged to use. To get around those issues, he
created his side project in Ruby on Rails: GitLab. Together with his colleague, Valery Sizov,
he developed this project alongside his regular work.

After this initiative, the project grew enormously:

Date Fact

2011
Sytze Sybrandij, the future CEO of GitLab, is impressed by the GitLab project and
code, and offers Zaporozhets the opportunity to try to commercialize it via https://
about.gitlab.com/.

2012 GitLab was announced to a broader audience via Hacker News (https://news.
ycombinator.com/item?id=4428278).

2013 Dimitri Zaporozhets decides to work full-time on GitLab and joins the company.
2015 GitLab becomes part of the Y Combinator class and received VC funding that year.
2018 GitLab receives another $100 million of VC funding and is valued at $1 billion.
2019 The GitLab company employs over 600 employees.

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278
https://news.ycombinator.com/item?id=4428278

Introducing the GitLab Architecture Chapter 1

[10]

The initial idea of GitLab was to earn money from open source technology by offering
support services. However, what happened was that companies started to bring in
consultants only to upgrade GitLab, and then they would stop the service contract. It
became clear that going for a 100% open source was not going to be competitive. Instead of
this, therefore, they chose open core. Under open core, a company releases a core software
system under an open source license. A different version of the software is sold under a
commercial license and contains more features.

So, GitLab was split up into two editions: an open source version, and an enterprise
version.

Exploring GitLab editions – CE and EE
The core of the GitLab software is called the CE. It is distributed under the MIT license,
which is a permissive free software license created at the Massachusetts Institute of
Technology. You are allowed to modify the software and use it in your creations.

No feature that ever made it to CE will ever be removed, or moved to a closed source
version. When GitLab EE was created in 2013, it was, at its core, GitLab CE, but it had
additional enterprise features, such as Lightweight Directory Access Protocol
(LDAP) groups. Those features are not open source, per se, but can be added to the core
version if they are perceived by the company as a core feature. The idea was that companies
should also contribute as much as possible to solving problems and creating new features.

In 2016, the GitLab EE product was divided into three tiers: Starter, Premium, and
Ultimate. Each tier is about five times more expensive than the previous one and
contains more features and support options, as mentioned in the following table:

Version Features (short list)

Starter

Everything on core GitLab CE:
• CI/CD
• Project Issue Board
• Mattermost integrations
• Time tracking
• GitLab pages

Premium

More enterprise features such as the following:
• Maven and NPM repository functionality
• Protected environments
• Burndown charts
• Multiple LDAP servers and Active Directory support

Introducing the GitLab Architecture Chapter 1

[11]

Ultimate

All options, including the following:
• All security scanning tools
• Epics
• Free guest users
• Web terminal for the web IDE

GitLab has a lot of features, but let's concentrate first on the basic building blocks.

The core system components of GitLab
GitLab is not a monolithic application. It tries to follow the Unix philosophy, which means
that a software module should do only one particular thing, and do it well. The
components that GitLab is made of are not as small and elegant as Unix's awk and sed, but
each component has a single purpose. You can find a high-level overview of these
components in the following diagram:

Introducing the GitLab Architecture Chapter 1

[12]

Gitlab started as a pure Ruby on Rails application, but some components were later
redesigned using Go. Ruby on Rails is a development framework built on top of the Ruby
programming language. It implements a model-view-controller pattern and offers methods
to connect to different databases (for example, ActiveRecord). It values convention over
configuration and don't-repeat-yourself (DRY) programming. It is very well suited to
rapid development, and at the same time, it is highly performant and has many features.

Let's dive a little deeper into those components in order to understand their roles.

NGINX
The Unicorn web component cannot be used directly as it does not offer all the features for
handling clients. The reverse proxy that is bundled by default is NGINX. It is also possible
to use Apache as a frontend for GitLab, but it is preferable to use NGINX. There are many
web servers available that could be installed in front of Unicorn, but in the end, there are
basically two types, which are as follows:

Process-based (forking or threaded)
Asynchronous

NGINX and lighttpd are probably the two most-well known asynchronous servers. Apache
is without a doubt the de facto standard process-based server. The biggest difference
between the two types is how they handle scalability. For a process-based server, any new
connections require a thread, while an event-driven, asynchronous server such as NGINX
only needs a few threads (or, theoretically, only one). For lighter workloads, this does not
matter much, but you will see a big difference when the number of connections grows,
especially in terms of RAM. When serving tens of thousands of simultaneous connections,
the amount of RAM used by NGINX would still hover around a couple of megabytes.
Apache would either use hundreds, or it would not work at all. This is why NGINX is the
better choice.

Debugging NGINX
The first thing you will want to look at are the log files which by default are called
error.log and access.log. In a GitLab environment installed from source these log files
will typically reside in /var/log/nginx/ and in a GitLab omnibus install in
/var/log/gitlab/nginx.

Introducing the GitLab Architecture Chapter 1

[13]

Following is an example of the error log:

2019/09/08 20:45:14 [crit] 2387#2387: *95 connect() to
unix:/var/www/gitlab-app/tmp/sockets/unicorn.sock failed (2: No such file
or directory) while connecting to upstream, client: 127.0.0.1, server:
localhost, request: "GET /-/metrics HTTP/1.1", upstream:
"http://unix:/var/www/gitlab-app/tmp/sockets/unicorn.sock:/-/metrics",
host: "127.0.0.1:8080"

Unicorn
Unicorn is an HTTP server for applications that deal with well-performing clients on
connections that show low latency and have enough bandwidth. It takes advantage of
features that are present in the core of Linux-like systems. It is called a Rack HTTP server
because it implements HTTP for Rack applications. Rack, in turn, is actually a Ruby
implementation of a minimal interface to deal with web requests, which you can use in
your code.

You can find the project at https://rack.github.io.

Unicorn runs as a daemon server in Unix and is programmed in Ruby and the C
programming language. Using Ruby means that it can also run a Ruby on Rails application
such as GitLab.

Debugging Unicorn
Maybe installing Unicorn produced errors, or you are experiencing bad performance that
you suspect is caused by Unicorn not working properly.

There are several ways to find the cause. The log files can point you in the right direction.

Timeouts in Unicorn logs
The following output is what a Unicorn worker timeout looks like
in unicorn_stderr.log. This is not necessarily bad; it just means that a new worker is
spawned:

 [2015-06-05T10:58:08.660325 #56227] ERROR -- : worker=10 PID:53009 timeout
(61s > 60s), killing

https://rack.github.io
https://rack.github.io
https://rack.github.io
https://rack.github.io
https://rack.github.io
https://rack.github.io
https://rack.github.io
https://rack.github.io
https://rack.github.io

Introducing the GitLab Architecture Chapter 1

[14]

 [2015-06-05T10:58:08.699360 #56227] ERROR -- : reaped #<Process::Status:
pid 53009 SIGKILL (signal 9)> worker=10
 [2015-06-05T10:58:08.708141 #62538] INFO -- : worker=10 spawned pid=62538
 [2015-06-05T10:58:08.708824 #62538] INFO -- : worker=10 ready

It could be that there are just not enough Unicorn workers available to respond to the
requests at hand. NGINX buffers a lot of requests so we must check on the handover socket
whether Unicorn can keep up. To do this, a little nifty script is available here: https://
github.com/jahio/unicorn-status.

It can be called with the following command:

$ ruby unicorn_status.rb /var/opt/gitlab/gitlab-rails/sockets/gitlab.socket
10
Running infinite loop. Use CTRL+C to exit.
--
Active Requests Queued Requests
20 11

The first argument here is the unicorn_status.rb script, the second is the socket to
connect to ../.socket, and the last argument is the poll interval (10).

Unicorn processes disappear
On Linux, there is a mechanism called Out-of-Memory (OOM) Killer that will free up
memory if the system is running low on memory, and you don't have any swap memory
left. It might kill Unicorn if it is using too much memory.

Use dmesg | egrep -i 'killed process' to search for OOM events:

[102335.3134488] Killed process 5567 (ruby) total-vm:13423004kB, anon-
rss:554088kB

Other kinds of errors or 100% CPU load
The ultimate way to debug Unicorn processes is to run strace on them:

Run sudo gdb -p (PID) to attach to the Unicorn process.1.
Run call (void) rb_backtrace() in the GDB console and find the generated2.
Ruby backtrace in /var/log/gitlab/unicorn/unicorn_stderr.log:

 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/bundler-1.16.2/lib/bu
ndler/cli/exec.rb:28:in `run'
 from

https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status
https://github.com/jahio/unicorn-status

Introducing the GitLab Architecture Chapter 1

[15]

/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/bundler-1.16.2/lib/bu
ndler/cli/exec.rb:74:in `kernel_load'
 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/bundler-1.16.2/lib/bu
ndler/cli/exec.rb:74:in `load'
 from /opt/gitlab/embedded/bin/unicorn:23:in `<top
(required)>'
 from /opt/gitlab/embedded/bin/unicorn:23:in `load
 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/bin/uni
corn:126:in `<top (required)>'
 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/lib/uni
corn/http_server.rb:132:in `start'
 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/lib/uni
corn/http_server.rb:508:in `spawn_missing_workers'
 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/lib/uni
corn/http_server.rb:678:in `worker_loop'
 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/lib/uni
corn/http_server.rb:678:in `select'

When you are done, leave GDB with detach and q.3.

Sidekiq
Sidekiq is a framework for background job processing. It allows you to scale your
application by performing work in the background. For more information on Sidekiq,
consult the following website: https://github.com/mperham/sidekiq/wiki.

Each Sidekiq server process pulls jobs from the queue in Redis and processes them. Like
your web processes, Sidekiq boots Rails so that your jobs and workers have the full Rails
API available for use, including ActiveRecord. The server will instantiate the worker and
call perform with the given arguments. Everything else is up to your code.

https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki
https://github.com/mperham/sidekiq/wiki

Introducing the GitLab Architecture Chapter 1

[16]

Debugging Sidekiq
As with Unicorn, there are several ways to debug Sidekiq processing. The easiest way is to
log in to GitLab as an administrator and view the logs from there, and especially view the
queues and jobs on the Background Jobs page, as shown in the following screenshot:

Sometimes, you experience troubles and find situations on your Linux server.

Sidekiq processes disappear
As mentioned before, in the Unicorn section, the OOM Killer might kill Sidekiq if it is using
too much memory.

Use dmesg | egrep -i 'killed process' to search for OOM events:

[102335.3134488] Killed process 8887 (ruby) total-vm:13523004kB, anon-
rss:5540458kB

A Sidekiq process is seemingly doing nothing
If Sidekiq isn't doing any work and it seems stuck most of the time, this means that the
program is waiting for something. A common wait situation is when you are doing remote
network calls. If you think this could be the case, you could make Sidekiq processes dump a
backtrace to the log by sending it a TTIN signal.

Introducing the GitLab Architecture Chapter 1

[17]

This is what a Sidekiq worker looks like in the log file in
/var/log/gitlab/sidekiq/current:

 {"severity":"INFO","time":"2019-06
23T19:00:14.493Z","class":"RemoteMirrorNotificationWorker","retry":3,"queue
":"remote_mirror_notification","jid":"69eb806bfb66b82315bcb249","created_at
":"2019-06-23T19:00:14.461Z","correlation_id":"toX0HnYW0s9","enqueued_at":"
2019-06-23T19:00:14.461Z","pid":471,"message":"RemoteMirrorNotificationWork
er JID-69eb806bfb66b82315bcb249: done: 0.03
sec","job_status":"done","duration":0.03,"completed_at":"2019-06-23T19:00:1
4.493Z"}

Since GitLab 12.0, the default output log format for Sidekiq is JSON, this makes it easier to
read the log files into a tool like logstash because it is more structured.

Other kind of errors or 100% CPU load
The ultimate way to debug Sidekiq processes is to make it dump a backtrace via GDB:

Run sudo gdb -p (PID) to attach to the Sidekiq worker process.1.
Run call (void) rb_backtrace() in the GDB console and find the generated2.
Ruby backtrace in /var/log/gitlab/sidekiq/current:

2018-09-21_19:55:03.48430 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/redis-3.3.5/lib/redis
/connection/ruby.rb:83:in `_read_from_socket'
2018-09-21_19:55:03.48431 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/redis-3.3.5/lib/redis
/connection/ruby.rb:87:in `rescue in _read_from_socket'
2018-09-21_19:55:03.48432 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/redis-3.3.5/lib/redis
/connection/ruby.rb:87:in `select'

It is very hard to read backtraces, but this process was doing network operations3.
while being traced, we can see a (_read_from _socket). You can read the
source code to check what it is doing (there are line numbers mentioned).
When you are done, leave GDB with detach and quit.4.

You can also use other tracing tools to examine the behavior of the looping process. On
Linux, for instance, strace -p <pid> allows you to view the system calls that are being
made by the process.

Introducing the GitLab Architecture Chapter 1

[18]

GitLab Shell
This component is used to provide access to Git repositories through SSH. In fact, for
pushes via the git-http protocol, it is also called instead of the Rails app. It's essentially a
small Ruby wrapper around the Git client. Git, through SSH, uses predefined commands
that can be executed on the GitLab server. For authorization, it makes calls to the GitLab
API. Before GitLab 5.0, this functionality was delivered by Gitolite and powered by the Perl
programming language.

The source code of this project can be found here: https://gitlab.com/gitlab-org/
gitlab-shell. You can see the following page:

You can install it locally, but it's really only useful when deployed together with other
GitLab components. When you have that installed (see Chapter 2, Installing GitLab, for
instructions on how), the next section describes a way to debug when you have problems.

Debugging GitLab Shell
In an omnibus installation, the log file for GitLab Shell can be found in the following
location:

/var/log/gitlab/gitlab-shell/gitlab-shell.log

https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell
https://gitlab.com/gitlab-org/gitlab-shell

Introducing the GitLab Architecture Chapter 1

[19]

Alternatively, it may be found in the following location, for installations from source:

/home/git/gitlab-shell/gitlab-shell.log

What you will generally find are log lines that concern the basic operations of GitLab Shell:

Git commands (such as git push and git pull).
Authorization calls to the GitLab Rails API to check whether you are allowed to
connect
Execution of pre-receive hooks
Actions requested
Post-receive actions
Any custom post-receive actions

Here, we have listed some lines from the log file:

bash-4.1$ tail gitlab-shell.log
time="2018-09-26T08:59:53+02:00" level=info msg="executing git command"
command="gitaly-upload-pack unix:/var/opt/gitlab/gitaly/gitaly.socket
{\"repository\":{\"storage_name\":\"default\",\"relative_path\":\"xxx/xxx.g
it\",\"git_object_directory\":\"\",\"git_alternate_object_directories\":[],
\"gl_repository\":\"xxx\"},\"gl_repository\":\"project-
xx\",\"gl_id\":\"key-xx\",\"gl_username\":\"xxxxxx\"}" pid=18855 user="user
with key key-xx"

time="2018-09-26T08:59:53+02:00" level=info msg="finished HTTP request"
duration=0.228132057
method=POST pid=18890 url="http://127.0.0.1:8080/api/v4/internal/allowed"

time="2018-09-26T08:59:54+02:00" level=info msg="finished HTTP request"
duration=0.030036933 method=POST pid=18890
url="http://127.0.0.1:8080/api/v4/internal/pre_receive"

time="2018-09-26T08:59:54+02:00" level=info msg="finished HTTP request"
duration=0.094035804 method=POST pid=18979
url="http://127.0.0.1:8080/api/v4/internal/post_receive"

One way to find errors is to look for certain patterns, such as failed, as follows. This
particular error points to a 500 error from Unicorn while checking whether a user has the
right authorization to make a call to the GitLab API.

Introducing the GitLab Architecture Chapter 1

[20]

This error should show up in the Unicorn logs (production.log) if you search for an
HTTP 500 error:

bash-4.1$ grep -i failed gitlab-shell.log
time="2018-09-26T08:05:52+02:00" level=error msg="API call failed"
body="{\"message\":\"500 Internal Server Error\"}" code=500 method=POST
pid=1587 url="http://127.0.0.1:8080/api/v4/internal/allowed"
time="2018-09-26T08:45:13+02:00" level=error msg="API call failed"
body="{\"message\":\"500 Internal Server Error\"}" code=500 method=POST
pid=24813 url="http://127.0.0.1:8080/api/v4/internal/allowed"

Redis
Redis is a caching tool and HTTP session store that allows you to save cached data and
session information from your website to an external location. This means that your
website doesn't have to calculate everything every time; instead, it can retrieve the data
from the cache and load the website much faster. The user sessions are in memory even if
the application goes down. Redis is a fast caching tool because it uses memory first. It has
several useful advantages:

Everything is stored in one place, so you only have to flush one cache.
It is faster than Memcache. This is noticeable when using the websites of large
shops.
Sessions are stored in memory and not in the database.
The backend becomes faster.

Redis is not merely a cache, but is also a data structure store. It is basically a database and
should be viewed conceptually as such. With regard to its operation and how it handles
data, it has more in common with a NoSQL database.

Basic data operations in Redis
We can discover some of the basics of Redis by playing with the data structures. You can
install Redis using instructions found at https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md.

Start the redis-cli command-line utility, and it will connect to the local Redis server:

$redis-cli
127.0.0.1:6379>

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md

Introducing the GitLab Architecture Chapter 1

[21]

It is not fair to view Redis as a simple hash database with key values. But still, the five data
structures that are provided do actually consist of a key and a value. Let's sum up the five
data structures:

String: You can use the set command to write a value to Redis. In the case of a
simple string, you can simply save the value in the datastore shown as follows.
After setting the string value, you can retrieve the value again by issuing the
get command:

$ redis-cli
127.0.0.1:6379> set mykind "Human"
OK
127.0.0.1:6379> get mykind
"Human"
127.0.0.1:6379>

Hash: In the same way as the string, you can set an arbitrary number of values
to a key. Generally speaking, Redis treats values as a byte array and doesn't care
what they are. This make Redis very handy for representing objects. Again, with
the get command, you can retrieve the values. GitLab uses this type to store web
session information from users:

$ redis-cli
127.0.0.1:6379> set programs:tron '{"name": "tron","kind":
"program"}'
OK
127.0.0.1:6379> get programs:tron
"{\"name\": \"tron\",\"kind\": \"program\"}"

List: The list type in Redis is implemented as a linked list. You can add items to
the list quite quickly with rpush (right push, to the tail of the list) or lpush (left
push, to the head of the list). On the other hand, accessing an item by index is not
that fast because it has to search the linked list. Still, for a queue mechanism, this
is a good solution.

$ redis-cli
127.0.0.1:6379> rpush specieslist human computer cyborg
(integer) 3
127.0.0.1:6379> rpop specieslist
"cyborg"
127.0.0.1:6379> rpop specieslist
"computer"
127.0.0.1:6379> rpop specieslist
"human"
127.0.0.1:6379> rpop specieslist
(nil)

Introducing the GitLab Architecture Chapter 1

[22]

Sets: Another datatype is the set. You add members with the sadd command.
Don't forget that these sets are unordered, so if you ask for the members with
smembers, the order will mostly be different to how you entered it:

$ redis-cli
127.0.0.1:6379> sadd speciesset human computer cyborg
(integer) 3
127.0.0.1:6379> smembers speciesset
1) "computer"
2) "human"
3) "cyborg"

Sorted sets: Fortunately, there is an ordered set as well. It is almost the same, but
one difference is that you add a score to the entry, and that will automatically
score the sort order, as you can see from the following:

127.0.0.1:6379> zadd speciessortedset 1 human
(integer) 1
127.0.0.1:6379> zadd speciessortedset 2 computer
(integer) 1
127.0.0.1:6379> zadd speciessortedset 3 cyborg
(integer) 1
127.0.0.1:6379> zrange speciessortedset 0 -1
1) "human"
2) "computer"
3) "cyborg"

Gitaly
In the first versions of GitLab, all Git operations relied on using a local disk or network
share. Gitaly is a project that tries to eliminate reliance on the Network File System
(NFS). Instead of calls to a filesystem service, Gitaly provides GitLab with a system based
on Remote Procedure Calls (RPCs) to access Git repositories. It is written in Go and uses
gRPC Remote Procedure Call (gRPC), a cross-platform RPC framework from Google. It
has been steadily developing since the beginning of 2017, and since GitLab 11.4, it can
replace the need for a shared NFS filesystem.

Introducing the GitLab Architecture Chapter 1

[23]

You can find an overview of Gitaly and its place in the GitLab architecture in the following
screenshot:

On a small installation, it runs in the same servers as all other components. In big clustered
environments, you can set up dedicated Gitaly servers, which can be used by Gitaly clients
such as the following:

Unicorn
Sidekiq
gitlab-workhorse

gitlab-shell

Elasticsearch indexer
Gitaly as a client

The source code of this project can be found here: https://gitlab.com/gitlab-org/
gitaly.

https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly
https://gitlab.com/gitlab-org/gitaly

Introducing the GitLab Architecture Chapter 1

[24]

Debugging Gitaly
You can use debugging tools that are available for Golang. But for starters, you can take a
look at the log file.

For source installs, use this:

/home/git/gitaly/

For Omnibus installations, use this:

/var/log/gitlab/gitaly/current

The following is an example of a log line:

2018-09-26_13:23:40.57373 lrv162w2 gitaly: time="2018-09-26T13:23:40Z"
level=info msg="finished streaming call" grpc.code=OK
grpc.method=SSHUploadPack grpc.request.glRepository=project111111
grpc.request.repoPath=namespace/project-bl.git
grpc.request.repoStorage=default grpc.request.topLevelGroup=hb-backend
grpc.service=gitaly.SSHService grpc.time_ms=150 peer.address=@
span.kind=server system=grpc

You can see the log level is info and this is a log event that captures a Git SSH command
(method=SSHUploadPack). It started a Git pack command on the server, which means it
rearranged and compressed data in a repository.

To generate more verbose logging, you can set the log level to a debug in the configuration
file. It is configured via a Tom's Obvious Minimal Language (TOML) configuration file.
This file is documented in the Gitaly source code repository mentioned previously.

For source installations, look here:

 /home/git/gitaly/config.toml

You can change the following section and change the level:

Optional: Set log level to only log entries with that severity or above
One of, in order: debug, info, warn, error, fatal, panic
Defaults to "info"
level = "warn"

For Omnibus installs, the following directives can be added to gitlab.rb to influence the
level of monitoring of Gitaly. Set it to debug to enable debug-level logging:

gitaly['log_directory'] = "/var/log/gitlab/gitaly"
gitaly['logging_level'] = "debug"

Introducing the GitLab Architecture Chapter 1

[25]

GitLab Workhorse
GitLab Workhorse is a sophisticated reverse proxy that is set up in front of GitLab. Initially
conceived to solve the problem of handling git-http requests, it started as a weekend
project with the name gitlab-git-httpserver. The functionality was previously
delivered by gitlab-grack (https://gitlab.com/gitlab-org/gitlab-grack). The main
web application server, Unicorn, was not especially suited to cater for these requests, which
can take a long time to finish. Handling these directly in Unicorn actually reverses the
advantages that Unicorn can provide fast and scalable HTTP requests.

Workhorse was created in Golang, and was conceived by Jacob Vosmaer, one of the GitLab
developers. You can read all about the process of creating it at https://about.gitlab.com/
2016/04/12/a-brief-history-of-gitlab-workhorse/.

Although it was first designed to handle the Git HTTP protocol, GitLab Workhorse
increasingly gained functionalities, such as these:

Certain static files, such as JavaScript and CSS files, are served directly.
It can intercept requests from Rails about opening a file. Workhorse will open the
file and send the content in the response body.
It can intercept calls for Git Large File Storage (LFS) and insert a temporary path
after preparing the file in the upload location. Git LFS is a feature where large
files can be stored outside the project space in GitLab.
It can control WebSocket connections for Rails, such as the terminal output.

Workhorse sits behind NGINX, which handles request routing and SSL termination.

Debugging GitLab Workhorse
As workhorse is a Golang written application, you can use methods for this language to
debug programs.

It also supports remote error logging with Sentry. To activate this feature, set the
GITLAB_WORKHORSE_SENTRY_DSN environment variable.

For Omnibus installations

The following is defined in the file (/etc/gitlab/gitlab.rb):

gitlab_workhorse['env'] = {'GITLAB_WORKHORSE_SENTRY_DSN' =>
'https://foobar'}

https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://gitlab.com/gitlab-org/gitlab-grack
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/
https://about.gitlab.com/2016/04/12/a-brief-history-of-gitlab-workhorse/

Introducing the GitLab Architecture Chapter 1

[26]

For Source installations

The following environment variable can be set in the file (/etc/default/gitlab):

export GITLAB_WORKHORSE_SENTRY_DSN='https://foobar'

Of course, the first thing to look at is the log files that are produced by this component. On
an Omnibus-based GitLab installation, you can find them in /var/log/gitlab/gitlab-
workhorse.

The following is an excerpt of the default log file (current):

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_5) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/11.1.1 Safari/605.1.15" 0.478
 2018-08-16_20:26:43.42795 localhost:8080 @ - - [2018/08/16:20:26:43 +0000]
"GET /root/mastering-gitlab-12.git/info/refs?service=git-upload-pack
HTTP/1.1" 401 26 "" "git/2.15.2 (Apple Git-101.1)" 0.066
 2018-08-16_20:26:50.60861 localhost:8080 @ - - [2018/08/16:20:26:50 +0000]
"POST /root/mastering-gitlab-12.git/git-upload-pack HTTP/1.1" 200 329 ""
"git/2.15.2 (Apple Git-101.1)" 0.249

In the preceding log file, you see, for example, git-http operations such as git-upload-
pack.

Database
There are two database varieties available for GitLab: PostgreSQL and MySQL/MariaDB.
The use of the latter is not recommended because the fast development of iterations of
GitLab, as a product, have focused primarily on PostgreSQL, meaning that a number of
optimizations are not available on MySQL. Furthermore, the zero-downtime method is not
available when using MySQL, and neither are features such as subgroups and GEO, which
will be explained later in this book.

As explained earlier, Ruby on Rails uses a so-called MVC approach. MVC is a well known
architectural pattern that was developed by Trygve Reenskaug in the Smalltalk language. It
was later enhanced for web applications (Model 2). The model in MVC is implemented by
the ActiveRecord library, which is part of Ruby on Rails.

The authoritative source for the data model can be found here: https://gitlab.com/
gitlab-org/gitlab-ee/blob/master/db/schema.rb. It is auto generated and represents the
current state of the database.

https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/db/schema.rb

Introducing the GitLab Architecture Chapter 1

[27]

The default PostgreSQL database that is included in the Omnibus package can handle
workloads for up to 10,000 users. Also, if you would like to create a Disaster Recovery
(DR) plan using a cold standby setup, you can use specific failover mechanisms.

A frequently used technique is to create a cold standby database (PostgreSQL DB 2) at
another site, as illustrated by the following diagram:

When you want to scale or increase the number of application servers, you need to scale the
database too. There are three important aspects of database scaling. Firstly, you want to be
able to scale database client connections as efficiently as possible. To do this, you can use
PgBouncer, which is a lightweight connection pooler.

Secondly, you want to have several database instances, one being the master node, and
replicate the data from the master to the slave. In the former, DR situation, this was done by
the basic built-in replication mechanism of PostgreSQL. In the current situation, a specific
tool, repmgr, is used, a tool for clustering PostgreSQL and handling the failover.

Introducing the GitLab Architecture Chapter 1

[28]

Finally, a service discovery tool such as Consul can be used to detect the PostgreSQL status
of each node, and update the PgBouncer service setting that determines which Postgres
instance to connect to.

As you can see, there are different ways of setting up your database for GitLab. The
architectures highlighted in the preceding diagram will be used in examples for building
high-availability environments in Scaling the Server Infrastructure (High- Availability Setup)
section of this book.

Introducing the GitLab Architecture Chapter 1

[29]

Debugging PostgreSQL
When you hit problems with PostgreSQL you can generally find the logs at /var/lib/pgs
ql/data but you can lookup the log_directory in postgresql.conf. On Omnibus
installations, the log file is var/log/gitlab/postgresql/current.

An example of the log showing a shutdown and a startup of the database:
2019-09-09_23:02:58.04140 received TERM from runit, sending INT instead to
force quit connections
2019-09-09_23:02:58.04141 LOG: received fast shutdown request
2019-09-09_23:02:58.07704 LOG: aborting any active transactions
2019-09-09_23:02:58.08152 FATAL: terminating connection due to
administrator command
2019-09-09_23:02:58.08163 LOG: worker process: logical replication
launcher (PID 10480) exited with exit code 1
2019-09-09_23:02:58.08458 LOG: shutting down
2019-09-09_23:02:58.12229 LOG: database system is shut down
2019-09-09_23:05:53.07284 LOG: listening on Unix socket
"/var/opt/gitlab/postgresql/.s.PGSQL.5432"
2019-09-09_23:05:53.13131 LOG: database system was shut down at 2019-09-09
23:02:58 GMT2019-09-09_23:05:53.15987 LOG: database system is ready to
accept connections

You can change the log settings of PostgreSQL to show more detail. For instance, you can
redirect the log messages to a central server. More details on how to do this can be found
here https://www.postgresql.org/docs/9.5/runtime-config-logging.html.

GitLab CI
GitLab CI is a feature that helps perform the Continuous Integration (CI) of software
components. When several developers work together using a versioning system, problems
can arise when changes made by one developer break the product as a whole. The best way
to make sure this happens less often, or at least early in the process, is to use integration
tests more frequently, hence the name continuous.

https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/runtime-config-logging.html

Introducing the GitLab Architecture Chapter 1

[30]

GitLab CI was launched as a standalone project in 2013, but was later integrated into the
main GitLab package. Combined with the GitLab Runner software, this feature has been
very popular with developers and is an important driver of the business. It also enabled
GitLab to build their product into a solution that not only does CI, but even continuous
delivery up to production environments. The current product vision for GitLab is to serve
as a complete DevOps life cycle product, from idea to production.

Forrester classified GitLab as a leader in CI in The Forrester Wave: Continuous Integration
Tools, Q3 2017. This is shown in the following diagram:

Feedback, one of the important aspects of the Extreme Programming (XP) movement, is an
important element of GitLab CI. It also serves as a way to communicate between
developers.

Introducing the GitLab Architecture Chapter 1

[31]

Pipelines and jobs
Pipelines and build jobs are basic building blocks for a Continuous
Integrations/Continuous Delivery (CI/CD) system nowadays. In GitLab, it is very easy to
start a pipeline. You only need to add a .gitlab-ci.yml file to your project and then, on
every commit/push to your repository, a pipeline will start. Every project has a pipeline's
overview; you can find it in the left-hand menu bar, under CI/CD:

Alternatively, you can view all jobs, by going to the Pipelines' Jobs page, as shown in the
following screenshot:

Introducing the GitLab Architecture Chapter 1

[32]

You can check the log of a job by clicking on the status of the job (for example, failed or
passed). You can debug why some jobs fail and see exactly what happened:

The importance of using pipelines and jobs for CI/CD cannot be overstated. In this section,
you've seen the basic interface to pipelines in GitLab, but in several chapters time, this will
be discussed in more detail (Utilizing GitLab CI and CI Runners section).

GitLab Runners
GitLab Runners were originally developed by Kamil Trzciński in 2015. They're now one of
the most popular features of GitLab.

The initial GitLab-CI-Runner was a very simple application written in Ruby, but worked
well in quite basic setups. You can think of it as a reference implementation of what a bare
runner could look like.

Introducing the GitLab Architecture Chapter 1

[33]

Issues with the old runner
The main problem with the old runner is that it could only run one concurrent job at a time.
If you wanted to run more, you could either set up a new server or create an additional user
to build jobs.

Secondly, it always ran projects on the server shell. This made it really hard to test projects
using different versions of Ruby or any other dependencies. It was not stateless, meaning
you had a contaminated build environment. Builds were therefore not very trustworthy.
Nowadays, having a stateless and clean build environment every time is essential.

Another aspect of the old Runner that made it less favorable was that it only ran on Linux-
based platforms. To make it work on macOS, a big GitLab user platform, you had to carry
out additional hacking. Support for Microsoft Windows was out of the question.

Finally, there were some heavy administrative burdens. The server was hard to scale,
because setting up a new server took a long time due to the dependencies you needed to
take care of in order to build projects.

The newer runner is a binary that you can put on a machine of any kind. It is really easy to
set up as a service and can work with multiple projects and multiple GitLab CI
coordinators. It also provides support for Docker, making it really easy to set up a build
environment with different versions.

Switching to Go
Go (or Golang) is a new language (less than 10 years old). It is already widely used by some
impressive parties, such as Docker (https://docker.com), Google, Kubernetes (https://
kubernetes.io), and Prometheus (https://prometheus.io). Go is a versatile tool that can
help you to program at a low level, close to the operating system or at a high level in a
language such as Java. It is perfectly suited to creating systems software. The language was
created in 2009 by R. Griesemer, R. Pike, and K.Thompson while working for Google. The
latter is very famous for co-creating the first Unix implementation and the B programming
language. The most important feature of the Go language is that it can compile one binary
without dependencies for multiple operating systems such as Linux, macOS, the BSDs, and
Windows. This also means it runs on different processor architectures (i386, amd64, ARM,
and PowerPC).

https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io

Introducing the GitLab Architecture Chapter 1

[34]

A short list of the benefits of Go follows:

Very good standard libraries (with good optional ones available elsewhere).
It is very fast to develop and test in Go.
The culture/community chooses boring solutions over complex ones (which is
good).
Cool tools such as Gofmt, race detector, and go vet.
Made for concurrency—for instance, you can use goroutines and channels.
Type safety—will save you many times from run-time errors and wrongly
defined data types.
Garbage collection—while programmers who use C know how to clean up, this
can still be helpful.
Closures or anonymous functions—enable the use of functional principles
(higher-order functions).

All these characteristics make Go the perfect choice for GitLab Runners. With Go, you can
create a relatively small binary that runs on a lot of platforms. It contains all that is needed
to run your projects.

In a GitLab environment, jobs are being executed by the Runners. They run them as they
are defined in a .gitlab-ci.yml file. The Runner itself can be running on a Virtual
Machine (VM) such as VmWare (VM), VPS, a laptop, a Docker container, or in a
Kubernetes cluster. Communication is one way from runner to GitLab and is mostly via an
HTTP API, so that path must be accessible by the Runner.

The .yml file defines what stages your CI/CD pipeline has and what to do in each stage.
This typically consists of build, test, and deploy stages.

GitLab mentions boring in its handbook as a valued way of reducing
complexity; see https://about.gitlab.com/handbook/values/
#efficiency.

https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency
https://about.gitlab.com/handbook/values/#efficiency

Introducing the GitLab Architecture Chapter 1

[35]

The project can be found at https://gitlab.com/gitlab-org/gitlab-runner:

A runner can either be specific to a certain project or it can serve multiple projects in
GitLab. If it serves all projects, it's known as a Shared Runner. GitLab Runners implement a
number of executors that can be used for your builds in different scenarios:

Shell executor: The runner simply executes a shell. The dependencies for the
build have to be installed manually.
Docker-based executor: The runner runs from a container. This makes it easier to
create clean builds because dependency management is shifted to the container
image. It is also easier to create a build environment with services that need each
other, such as PostgreSQL.
Autoscaling Docker SSH: A Docker machine creates instances with the Docker
Engine to run Docker containers.
Kubernetes: GitLab Runner can use Kubernetes to run builds on a Kubernetes
cluster.

Runners have evolved enormously over the last couple of years. GitLab itself sees them as
one of the most important components of their suite. This section has given more insight
into the development of this popular tool.

https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner

Introducing the GitLab Architecture Chapter 1

[36]

Cloud native
Toward the end of 2016 and at the start of 2017, there was a public debate in the GitLab
community about whether reverting back from the cloud to bare metal would be cost-
effective for GitLab.com. At the time, the filesystem used for repositories was Ceph. The
performance of that distributed filesystem was not good enough to handle GitLab.com.
They asked the community for advice and received a lot of feedback from people who
experienced similar moves firsthand. In the end, the decision was made to stay in the cloud
(https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/). Instead,
GitLab would focus on creating a solution, not on the filesystem level, but making sure that
Git input/output (I/O) behavior is better managed at the application level. This can be seen
as the birth of the Gitaly component. Sid Sijbrandij emphasized the importance of being a
software company, not an infrastructure company.

In August 2018, GitLab migrated their cloud-based offering, GitLab.com, from Azure to
Google Cloud Platform (GCP). The main reason for switching to GCP according to CEO,
Sid Sijbrandij was as follows:

"Google as a public cloud, they have more experience than the other public cloud providers
because they basically made a cloud for themselves [...] you find that in things such as
networking, where their network quality is ahead of everyone else. It's more reliable, it has
less jitter, and it's just really, really impressive how they do that, and we're happy to start
hosting GitLab.com on that."

It seems the move paid off; users have reported that GitLab.com is noticeably
faster. Another transformation that is likely to cause further acceleration soon is the move
to using Kubernetes as a container orchestrator. This is an important part of their strategy
to incorporate functionality in a lot of places in GitLab besides the autoscaling of GitLab
runners. GitLab's own high-availability tool, GEO, was used to synchronize the data from
one cloud to another. Running on Google's architecture also allows GitLab to utilize object-
storage for particular features as well, such as Git LFS.

https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/2017/03/02/why-we-are-not-leaving-the-cloud/
https://about.gitlab.com/
https://about.gitlab.com/

Introducing the GitLab Architecture Chapter 1

[37]

Summary
In this chapter, we have learned about the people and the organization behind GitLab.
Starting from the beginning, we have shown you how the project has developed over the
years. We went through the core components of GitLab and how to install them. For some
components, we included ways to debug the installation.

We also gave a brief introduction to GitLab CI and the client programs that interact with it,
such as GitLab Runner. We showed you why this feature is so important and how it is
perceived by the IT industry.

In the next chapter, we will install and configure GitLab on different kinds of systems. If
you're new to the product, prepare to be amazed!

Questions
When and by whom was GitLab initially developed?1.
How is GitLab funded?2.
Name all the programming languages that are used in the GitLab software.3.
Which licenses are used by GitLab?4.
Why are they using these licenses?5.
Name the core components of GitLab.6.
How many offices does GitLab have?7.
What is stored in Redis?8.
What has Gitaly replaced?9.
Which cloud service was chosen by GitLab to focus on in 2018?10.

Introducing the GitLab Architecture Chapter 1

[38]

Further reading
Sidekiq—source and documentation: https://github.com/mperham/sidekiq

Ruby on Rails: https://rubyonrails.org

Unicorn: https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-
tricks/

Cloud Native programming with Golang by Mina Andrawos, Martin Helmich: https:/
/www.packtpub.com/in/application-development/cloud-native-programming-
golang

Nginx HTTP Server - Fourth Edition by Clement Nedelcu, Martin Fjordvald: https://
www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-
edition

Mastering Redis by Jeremy Nelson: https://www.packtpub.com/in/big-data-and-
business-intelligence/mastering-redis

PostgreSQL Administration Cookbook, 9.5/9.6 Edition by Simon Riggs, Gianni Ciolli,
Gabriele Bartolini: https://www.packtpub.com/in/big-data-and-business-
intelligence/postgresql-administration-cookbook-9596-edition

https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://github.com/mperham/sidekiq
https://rubyonrails.org
https://rubyonrails.org
https://rubyonrails.org
https://rubyonrails.org
https://rubyonrails.org
https://rubyonrails.org
https://rubyonrails.org
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://thorstenball.com/blog/2014/11/20/unicorn-unix-magic-tricks/
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/application-development/cloud-native-programming-golang
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/virtualization-and-cloud/nginx-http-server-fourth-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-redis
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition
https://www.packtpub.com/in/big-data-and-business-intelligence/postgresql-administration-cookbook-9596-edition

2
Installing GitLab

In this chapter, we will discuss several ways of installing GitLab. We will start with the
recommended way of installing GitLab on your own machine, using the omnibus installer.
Secondly, we will show how to do a complete install from the GitLab source files. This will
all take place on the Debian Linux platform. Then, we will move to a more modern way of
running an application, by showing you how to use a Kubernetes orchestrator. Finally, we
will demonstrate installation using a cloud platform, DigitalOcean. They have predefined
GitLab images that are internally configured using the omnibus installer.

In this chapter, the following points will be covered:

Installing using omnibus packages
Running from source files
Using GitLab from Docker
Deploying GitLab using Kubernetes
Creating droplets on DigitalOcean

Technical requirements
For managing omnibus installations, there is one central configuration file called
gitlab.rb. You need to create it or copy an example. There is a template available that
you can find at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/
gitlab-config-template/gitlab.rb.template. It is not updated after upgrades as we are
using these files just for demonstration purpose. In large parts of this chapter, I will quote
and discuss parts of this file.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template

Installing GitLab Chapter 2

[40]

To follow along with the instructions in this chapter, please download the Git repository
available on GitHub: https://github.com/PacktPublishing/Mastering-GitLab-12/tree/
master/Chapter02.

Although GitLab can be installed on a variety of platforms, in this chapter we choose
Debian 10 (Buster) to show you how it's done. You can download Debian from http://
debian.org.

We will require the following tools as well:

Docker: https://docker.com

Helm: https://helm.sh

kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl

Installing GitLab using omnibus packages
There are several ways to install GitLab. The best way is to install it using the omnibus
installer, a Chef-based configuration package. The installer software is actually a fork from
a Chef project at https://github.com/chef/omnibus. The reason for this being the best
way to install it is that it takes care of a lot of boilerplate for you. There are a lot of details
surrounding a GitLab installation and it is easy to make mistakes. Automating this via Chef
omnibus eliminates a lot of complexity and possible errors. The installer can be used to
install GitLab on several platforms:

Ubuntu
Debian
CentOS (any Red Hat derivative)
OpenSUSE
Raspbian

We will use Debian as an example in the section below 'Running the installer'.

Omnibus structure
Globally, the omnibus package consists of the following:

A project definition
Individual software definitions

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter02
http://debian.org
http://debian.org
http://debian.org
http://debian.org
http://debian.org
http://debian.org
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://docker.com
https://helm.sh
https://helm.sh
https://helm.sh
https://helm.sh
https://helm.sh
https://helm.sh
https://helm.sh
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus
https://github.com/chef/omnibus

Installing GitLab Chapter 2

[41]

A GitLab configuration template
Chef components such as cookbooks and attributes
Runit recipes for managing services
Tests
Last but not least, the gitlab-ctl commands

Project definition
This file contains metadata and describes details of the project, as well as the dependencies
contained in the project. You can find it in the omnibus source code
at config/projects/gitlab.rb.

Individual software definitions
Found in the config/software/ folder, it contains all of the software that is part of the
omnibus install. For instance, if you want to use PostgreSQL (a relational database), you
will find the configuration, the license, its dependencies, and instructions on how to build
or get the software. Sometimes, a patch is needed and that will be incorporated too.

A GitLab configuration template
All configuration directives are read from a /etc/gitlab/gitlab.rb file, which should
be placed on the destination system where omnibus is to be applied. There are a lot of
settings you can manipulate using that file. The standard way to specify settings is by using
the following:

component['settings'] = $value eg. gitlab_rails['webhook_timeout'] = 10

Chef components
There are several Chef cookbooks that are part of GitLab omnibus and they may or may
not be executed depending on the configuration you specify.

Installing GitLab Chapter 2

[42]

Runit recipe
GitLab has chosen runit (https://wiki.archlinux.org/index.php/Runit) as the process
supervisor that handles all of the services that are installed with the omnibus-gitlab
package. On install, it determines which init system is used and it makes sure it is called
appropriately during boot. It manages the stopping, starting, reloading, and enabling of
services.

Tests
The omnibus-gitlab repository uses ChefSpec to test (behavior driven testing framework)
its cookbooks. Tests may, for example, look for files that should be there and conditions
after running a command. Normally, these tests only matter if you are changing the source
code (https://gitlab.com/gitlab-org/omnibus-gitlab/) of the omnibus-gitlab installer.
You will find these in the spec folder.

gitlab-ctl commands
This is the most import command when using the omnibus-gitlab package. It is available
after running the installer. This tool can be used to manage general things such as the
starting/stopping/reloading of all omnibus-gitlab provided services, but it also provides a
vital function in applying changes in the gitlab.rb configuration file. Never forget to
apply changes with the following command:

gitlab-ctl reconfigure

The main commands are as follows:

help (help about commands)
cleanse (delete all the data and reset the situation)
show-config (show what configuration is to be created)
uninstall (stop all processes and remove the managing process service)

And the service management commands are as follows:

hup (send a service or all the hangup signals)
kill (send a service or all the kill signals)
start/restart/stop (send a service or all the commands)
status (test and report the status of the service specified or all services)
tail (watch the logs of all services)

https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://wiki.archlinux.org/index.php/Runit
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/
https://gitlab.com/gitlab-org/omnibus-gitlab/

Installing GitLab Chapter 2

[43]

Running the installer
Below we will show you how to run the omnibus-gitlab install on Debian Linux. Before we
can run the package installer, we need to prepare some things:

We need to set the internationalization settings if we want to use US English and1.
UTF8 and install some packages (curl, openssh-server en the default ssl root
certificates):

sudo apt-get update
export LANGUAGE=en_US.UTF-8
export LANG=en_US.UTF-8
export LC_ALL=en_US.UTF-8
sudo locale-gen en_US.UTF-8
sudo apt-get install -y curl openssh-server ca-certificates

When using GitLab, it is also important to configure email for notifications.2.
Usually, this is done via Postfix, but you can use another solution and point
GitLab to it (external SMTP (Simple Mail Transfer Protocol)):

sudo apt-get install -y postfix

The best option is to choose Internet Site when asked and use your external host3.
name as mail name. For the rest, accept the defaults.
Add the GitLab package repository and install the package.4.
Using the following curl command, you install the GitLab package repository5.
and initiate an installation by downloading a package:

curl
https://packages.gitlab.com/install/repositories/gitlab/gitlab-ee/s
cript.deb.sh | sudo bash

The next step is to really execute the package install step. You can set6.
the EXTERNAL_URL variable to the URL of your new GitLab instance. If you
specify a https:// URL the installer will try to use Let's Encrypt for generating
a certificate. This service is free to use (https://letsencrypt.org/), but requires
a valid hostname (it is validated) and an incoming port 80, which is reachable
from the internet. You can also specify a normal http:// URL in which case
Let's Encrypt is not used. The install command is as follows:

 sudo EXTERNAL_URL="http://gitlab.example.com" apt-get install
gitlab-ee

https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/

Installing GitLab Chapter 2

[44]

Browsing to the external URL and login
If it is the first time you are using it, you will be presented with a password reset form. You
can specify the password for the initial admin account, and after the password is saved, you
will be sent to the login screen. Log in with the admin credentials that you just chose.

Extensive information and instructions on what to do next and configuring GitLab are
included in the following chapter.

Upgrade using the omnibus-gitlab package
Normally if you deploy the package on an existing installation it will automatically
upgrade components that are installed. For GitLab 12 the PostgreSQL database will be
automatically upgraded to version 10.7 unless you create a file called
/etc/gitlab/disable-postgresql-upgrade. Always read the release notes for special
instructions when upgrading. For version 12 they are here: https://docs.gitlab.com/
omnibus/update/gitlab_12_changes.html.

Running from source
Before we dive into installing GitLab from source, please beware of the fact that using this
method is not advised for production environments. It is very hard to maintain and
reproduce a custom GitLab install. There are many components and it is much more
efficient to use a package like Omnibus, where you get tried and tested software and
dependencies.

It can however, prove useful in understanding how a GitLab installation is created.

When installing from source, make sure you have reviewed the latest installation guides for
your platform for the GitLab branch you want (for example, 12-0). The instructions in this
book will ultimately be out of date. Furthermore, if you run into an issue, you can try to
find an answer on the GitLab forum: https://forum.gitlab.com/c/troubleshooting. If
the problem turns out to be a bug or unwanted behavior by GitLab, you can open an issue
at https://gitlab.com/gitlab-org/gitlab-ce/issues. The following sections will feature
the exact installation instructions for a Debian version.

https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://docs.gitlab.com/omnibus/update/gitlab_12_changes.html
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://forum.gitlab.com/c/troubleshooting
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues
https://gitlab.com/gitlab-org/gitlab-ce/issues

Installing GitLab Chapter 2

[45]

Operating system – Debian 10
Here, you will find the instructions for installing GitLab on Debian 10 code named Buster.
Debian is one of the oldest Linux distributions and was first released in 1993, over 26 years
ago. The foundation behind it has always had a firm principle to only include open source
General Public License (GPL) software. The package management system in use, apt,
combined with good package maintainers, ensured good quality of the software
throughout the years. Their use the dependency management system (apt) to determine
which components should be included created a very clean product.

Debian became a basic distribution that others forked and expanded upon. In 2016, there
were about 125 Debian-based distributions.

Version 10 was released in July 2019 and will be supported up to 2022.

The following install instructions were created for and tested on Debian operating systems.
For installing on Red Hat Enterprise Linux (RHEL) or its sister operating system, the
Community Enterprise Operating System (CentOS), we recommend using the omnibus
packages.

The following instructions should work for most people. Many people run into permission
problems because they have changed the location of directories or run services as a
different user:

First, we will start explaining which basic software packages you need to install
in preparation for installing GitLab. Then, we'll touch on the installation of the
required programming languages.
Once, these steps are successful, we'll continue the installation by preparing the
SQL database and the memory database for GitLab.
Finally, we'll start the installation of the GitLab application components.

You will have to edit several configuration files as part of the installation. Make sure you
have a working editor. The most common one is vim and we will use that in the examples
of this book.

Required basic software packages
First, set the locale to your preference (I use US English UTF-8, which is 8-bit Unicode
Transformation Format). These settings are by default not present on my Debian system:

export LANGUAGE=en_US.UTF-8
export LANG=en_US.UTF-8

Installing GitLab Chapter 2

[46]

export LC_ALL=en_US.UTF-8
sudo locale-gen en_US.UTF-8

Install the required software using the following command:

sudo apt-get install -y build-essential zlib1g-dev libyaml-dev libssl-dev
libgdbm-dev libre2-dev libreadline-dev libncurses5-dev libffi-dev curl
openssh-server libxml2-dev libxslt-dev libcurl4-openssl-dev libicu-dev
logrotate rsync python-docutils pkg-config cmake wget

Make sure the version of Git is 2.9.5 or higher:

git --version

If it is lower or not installed, install Git from source with these instructions:

Make sure you have the build tools installed:

sudo apt-get install -y libcurl4-openssl-dev libexpat1-dev gettext
libz-dev libssl-dev build-essential

Install the Perl compatible regular expressions tools:

cd /tmp
curl --silent --show-error --location
https://ftp.pcre.org/pub/pcre/pcre2-10.33.tar.gz --output
pcre2.tar.gz
tar -xzf pcre2.tar.gz
cd pcre2-10.33
chmod +x configure
./configure --prefix=/usr --enable-jit
make
sudo make install

Now download, check the shasum and build Git:

cd /tmp
curl --remote-name --location --progress
https://www.kernel.org/pub/software/scm/git/git-2.22.0.tar.gz
echo
'a4b7e4365bee43caa12a38d646d2c93743d755d1cea5eab448ffb40906c9da0b
git-2.22.0.tar.gz' | shasum -a256 -c - && tar -xzf
git-2.22.0.tar.gz
cd git-2.22.0/
./configure --with-libpcre
make prefix=/usr/local all
sudo make prefix=/usr/local install

Installing GitLab Chapter 2

[47]

Install graphicsmagick:

sudo apt-get install -y graphicsmagick

Install a mail server, but don't use Exim. It makes more sense to use Postfix:

sudo apt-get install -y postfix

Then, select Internet Site and press Enter to confirm the hostname.

Required programming languages
GitLab needs several programming languages in order to function. You need to install them
in order to use all the features.

Ruby
As GitLab is still mainly written in Ruby, we need to install that language. Remove the old
Ruby 1.8 if present in the OS:

sudo apt-get remove ruby1.8

Download the latest Ruby, check the signature and compile it:

$ wget https://cache.ruby-lang.org/pub/ruby/2.6/ruby-2.6.3.tar.gz
$ shasum ruby-2.6.3.tar.gz
2347ed6ca5490a104ebd5684d2b9b5eefa6cd33c ruby-2.6.3.tar.gz
$ tar xvzf ruby-2.6.3.tar.gz
..
$ cd ruby-2.6.3
$./configure --disable-install-rdoc
$ make
$ sudo make install

After installation is finished, check the version using the following command:

$ruby -v
ruby 2.6.3p62 (2019-04-16 revision 67580) [x86_64-linux]

Installing GitLab Chapter 2

[48]

Then, install the bundler gem:

$ sudo gem install bundler --no-document --version '< 2'
Fetching: bundler-1.17.3.gem (100%)
Successfully installed bundler-1.17.3
1 gem installed

Now, the basic installation of Ruby is complete.

Go
The newer parts of GitLab are written in Go (sometimes called Golang). These parts have
been in GitLab since version 8.0, so we need this language compiler too in order to run
newer versions of GitLab. It is best to download the latest version of Go here: https://
golang.org. After download make sure the checksum is correct (for the linux-amd64 page
for go 11.10 it is
aefaa228b68641e266d1f23f1d95dba33f17552ba132878b65bb798ffa37e6d0. We
install it in the /usr/local/bin location:

$ wget https://dl.google.com/go/go1.11.10.linux-amd64.tar.gz
$ shasum -a256 go1.11.10.linux-amd64.tar.gz
aefaa228b68641e266d1f23f1d95dba33f17552ba132878b65bb798ffa37e6d0
go1.11.10.linux-amd64.tar.gz
$ sudo tar -C /usr/local -xzf go1.11.10.linux-amd64.tar.gz
$ sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
$ rm go1.11.10.linux-amd64.tar.gz

$ go version
go version go1.11.10 linux/amd64

Currently, Go supports eight different hardware instructions sets, so you have some choice.
You can find downloads for platforms other than 64-bit Linux on the Go Downloads page,
which is located at https://golang.org/dl/.

Node.js
GitLab uses Node.js to compile JavaScript, and Yarn is used for the dependency
management of JavaScript components. Because these tools evolve quickly (there are
regular new versions), you should really check the current requirements at https://about.
gitlab.com/. As of April 2019, the supported version of Node.js should be ≥ 8.10.0, and
Yarn should be ≥ v1.10.0.

https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://about.gitlab.com/

Installing GitLab Chapter 2

[49]

Because the versions in the Linux distributions are typically behind, you should install from
the source. The following code block shows how this is done:

 $ curl --location https://deb.nodesource.com/setup_12.x | sudo bash -
 $ sudo apt-get install -y nodejs
 $ node -v
 v12.6.0

 $ curl --silent --show-error https://dl.yarnpkg.com/debian/pubkey.gpg |
sudo apt-key add -
 OK
 $ echo "deb https://dl.yarnpkg.com/debian

/ stable main" | sudo tee \
 /etc/apt/sources.list.d/yarn.list
 $ sudo apt-get update
 $ sudo apt-get install yarn
 ...

 $ yarn -v
 1.17.3

You can find more information about Yarn at https://yarnpkg.com/en/docs. The Node.js
documentation can be found at https://nodejs.org/en/docs/.

System users
Create a Git user for GitLab that has no login shell and provide a common name in the
GECOs field (GECOS = old Unix age printers):

$ sudo adduser --disabled-login --gecos 'GitLab user' git
Adding user `git' ...
Adding new group `git' (1001) ...
Adding new user `git' (1001) with group `git' ...
Creating home directory `/home/git' ...
Copying files from `/etc/skel' ...

The result is a user being added named git, with a group called git, an established home
directory, and some template files copied to the home directory from /etc/skel.

https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://yarnpkg.com/en/docs
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/

Installing GitLab Chapter 2

[50]

SQL database
You really should use a PostgreSQL database, as explained in Chapter 1, Introducing the
GitLab Architecture. For MySQL (a different SQL database), check the MySQL setup guide.

Install the database packages using the following command:

$ sudo apt-get install -y postgresql postgresql-client libpq-dev
postgresql-contrib
....
Setting up postgresql-contrib (11+200+deb10u2) ...
Setting up postgresql (11+200+deb10u2) ...
Processing triggers for systemd (241-5) ...
Processing triggers for man-db (2.8.5-2) ...
Processing triggers for libc-bin (2.28-10) ...

Start the Database Engine:

$ sudo service postgresql start

Create a database user for GitLab:

$ sudo -u postgres psql -d template1 -c "CREATE USER git CREATEDB;"
CREATE ROLE

Create the pg_trgm extension (required for GitLab 8.6+):

$ sudo -u postgres psql -d template1 -c "CREATE EXTENSION IF NOT EXISTS
pg_trgm;"
 CREATE EXTENSION

Create the GitLab production database and grant all privileges on the database:

$ sudo -u postgres psql -d template1 -c "CREATE DATABASE
gitlabhq_production OWNER git;"
 CREATE DATABASE

Try connecting to the new database with the new user:

$ sudo -u git -H psql -d gitlabhq_production
Postgresql (9.4.22) Type “help” for help.
gitlabhq_production=>

Installing GitLab Chapter 2

[51]

Check whether the pg_trgm extension is enabled by pasting or typing this in the database
console:

 SELECT true AS enabled
 FROM pg_available_extensions
 WHERE name = 'pg_trgm'
 AND installed_version IS NOT NULL;

If the extension is enabled, this will produce the following output:

enabled

t
(1 row)

Now, we set the database password:

gitlabhq_production=> \password git
Enter new password: <type a password>
Enter it again: <type again this password>
gitlabhq_production=> \q

Quit the database console with \q. Save this password for later use for yourself when you
configure the GitLab installation.

Create an entry in the PostgreSQL main configuration file:

$ vi /etc/postgresql/11/main/postgresql.conf

Change the listen address to *, or change the IP if it now says localhost and uncomment:

listen_addresses = '*'

Create an entry in the PostgreSQL host file:

$ sudo vi /etc/postgresql/11/main/pg_hba.conf

Add a line such as this:

host gitlabhq_production git <ip of gitlab server>/32 md5

After saving the host file, restart the database instance for the settings to take effect:

$ sudo service postgresql restart

The database is now ready for GitLab.

Installing GitLab Chapter 2

[52]

Redis memory database
In the previous chapter, we talked about Redis and how the program works.

We need at least v2.8 of Redis for the installation of GitLab. It can be easily installed on
Debian with apt:

$ sudo apt-get install redis-server

Configure Redis to use sockets:

$ sudo cp /etc/redis/redis.conf /etc/redis/redis.conf.orig

Disable Redis listening on Transmission Control Protocol (TCP) by setting port to 0:

$ sudo sed 's/^port .*/port 0/' /etc/redis/redis.conf.orig | sudo tee
/etc/redis/redis.conf

Enable the Redis socket for the default path on Debian and similar distributions:

$ sudo echo 'unixsocket /var/run/redis/redis.sock' | sudo tee -a
/etc/redis/redis.conf

Grant permission to the socket to all members of the Redis group:

$ sudo echo 'unixsocketperm 770' | sudo tee -a /etc/redis/redis.conf

Create the directory that contains the socket (if it exists it's ok):

$ sudo mkdir /var/run/redis
$ sudo chown redis:redis /var/run/redis
$ sudo chmod 755 /var/run/redis

Persist the directory that contains the socket, if applicable:

echo 'd /var/run/redis 0755 redis redis 10d -' | sudo tee -a
/etc/tmpfiles.d/redis.conf
 fi

Activate the changes to redis.conf:

$ sudo service redis-server restart

Add Git to the Redis group:

$ sudo usermod -aG redis git

We now have a functional Redis server to be used with GitLab.

Installing GitLab Chapter 2

[53]

GitLab
We'll install GitLab in the home directory of the git user:

$ cd /home/git

Clone the source:

$ sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-ce.git -b
12-2-stable gitlab
 Cloning into 'gitlab'...
 remote: Enumerating objects: 1234071, done.
 remote: Counting objects: 100% (1234071/1234071), done.
 remote: Compressing objects: 100% (369844/369844), done.
 remote: Total 1234071 (delta 937064), reused 1101079 (delta 849256)
 Receiving objects: 100% (1234071/1234071), 529.69 MiB | 5.58 MiB/s, done.
 Resolving deltas: 100% (937064/937064), done.

Go to the GitLab installation folder:

$ cd /home/git/gitlab

Copy the example GitLab config:

$ sudo -u git -H cp config/gitlab.yml.example config/gitlab.yml

Update the GitLab configuration file and follow the directions at the top of the file:

$ sudo -u git vi config/gitlab.yml

Copy the example secrets file:

$ sudo -u git -H cp config/secrets.yml.example config/secrets.yml
$ sudo -u git -H chmod 0600 config/secrets.yml

Make sure GitLab can write to the log/ and tmp/ directories:

$ sudo chown -R git log/
$ sudo chown -R git tmp/
$ sudo chmod -R u+rwX,go-w log/
$ sudo chmod -R u+rwX tmp/

Make sure GitLab can write to the tmp/pids/ and tmp/sockets/ directories:

$ sudo chmod -R u+rwX tmp/pids/
$ sudo chmod -R u+rwX tmp/sockets/

Installing GitLab Chapter 2

[54]

Create the public/uploads/ directory:

$ sudo -u git -H mkdir public/uploads/

Make sure that only the GitLab user has access to the public/uploads/ directory, now
that files in public/uploads are served by GitLab-Workhorse:

$ sudo chmod 0700 public/uploads

Change the permissions of the directory where CI job traces are stored:

$ sudo chmod -R u+rwX builds/

Change the permissions of the directory where CI artifacts are stored:

$ sudo chmod -R u+rwX shared/artifacts/

Change the permissions of the directory where GitLab pages are stored:

$ sudo chmod -R ug+rwX shared/pages/

Copy the example Unicorn configuration:

$ sudo -u git -H cp config/unicorn.rb.example config/unicorn.rb

Find the number of cores:

$ nproc

Enable cluster mode if you expect to have a high load instance. Set the number of workers
to at least the number of cores. For example, change the amount of workers to 3 for a 2 GB
RAM server:

$ sudo -u git vi config/unicorn.rb

Copy the example Rack attack configuration:

$ sudo -u git -H cp config/initializers/rack_attack.rb.example
config/initializers/rack_attack.rb

Configuration of Git global settings for Git user autocrlf is needed for the web editor:

$ sudo -u git -H git config --global core.autocrlf input

Disable git gc –auto because GitLab already runs git gc when needed:

$ sudo -u git -H git config --global gc.auto 0

Installing GitLab Chapter 2

[55]

Enable packfile bitmaps:

$ sudo -u git -H git config --global repack.writeBitmaps true

Enable push options:

$ sudo -u git -H git config --global receive.advertisePushOptions true

Configure the Redis connection settings:

$ sudo -u git -H cp config/resque.yml.example config/resque.yml

Configure the GitLab database settings by copying the template for PostgreSQL to
database.yml:

$ sudo -u git cp config/database.yml.postgresql config/database.yml

Now, update config/database.yml:

$ sudo -u git vi config/database.yml

At the very least, the lines to change are as follows:

password: "<your secure password>"
host: <your postgres host>

"<your secure password" is the password you created earlier, in the SQL database
section of this chapter! The host is the hostname or IP address of your PostgreSQL database
server.

Make config/database.yml readable to Git only:

$ sudo -u git -H chmod o-rwx config/database.yml

Install RubyGems (expect a lot of output):

$sudo -u git -H bundle install --deployment --without development test
mysql aws kerberos
...

The core GitLab application is now installed on the system. We need other components as
well, such as GitLab Shell, GitLab Workhorse, and Gitaly. They will be explained in the
next sections.

Installing GitLab Chapter 2

[56]

Installing GitLab Shell
GitLab Shell is SSH access and repository management software developed specially for
GitLab. You can install it as follows:

$ sudo -u git -H bundle exec rake gitlab:shell:install
REDIS_URL=unix:/var/run/redis/redis.sock RAILS_ENV=production
SKIP_STORAGE_VALIDATION=true

By default, the gitlab-shell configuration is generated from your main GitLab
configuration. You can review (and modify) the gitlab-shell configuration as follows:

$ sudo -u git vi /home/git/gitlab-shell/config.yml

Starting the service will be executed later.

Installing GitLab-Workhorse
GitLab-Workhorse uses GNU (Gnu's Not Unix) make. The following command line will
install GitLab-Workhorse in /home/git/gitlab-workhorse, which is the recommended
location:

$ sudo -u git -H bundle exec rake
"gitlab:workhorse:install[/home/git/gitlab-workhorse]" RAILS_ENV=production

Installing Gitaly
Fetch the Gitaly source with Git and compile with Go:

$ sudo -u git -H bundle exec rake
"gitlab:gitaly:install[/home/git/gitaly,/home/git/repositories]"
RAILS_ENV=production

Restrict Gitaly socket access:

$ sudo chmod 0700 /home/git/gitlab/tmp/sockets/private
$ sudo chown git /home/git/gitlab/tmp/sockets/private

Make sure Gitaly is started:

$ sudo -u git bash -c "/home/git/gitlab/bin/daemon_with_pidfile
/home/git/gitlab/tmp/pids//gitaly.pid /home/git/gitaly/gitaly
/home/git/gitaly/config.toml >> /home/git/gitlab/log/gitaly.log 2>&1 &"

Installing GitLab Chapter 2

[57]

Take a look at /home/git/gitlab/log/gitaly.log for errors and check whether Gitaly
processes are in the ps aux process list. It should run.

Initializing the database and activating advanced
features
Use the following command to initialize the database and activate advanced features:

$ cd /home/git/gitlab
$ sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production
force=yes

When done, you will see the following:

‘Administrator account created:'

You can continue the installation and eventually start GitLab, then the first person who
accesses the login page will be given the option to supply a new admin password. This is
probably not what you want, so there is a command to set this before starting. You have to
supply the password, email, and variable to override the database check to make it work
(answer yes to the prompt):

sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production
GITLAB_ROOT_PASSWORD=yourpassword GITLAB_ROOT_EMAIL=youremail@gmail.com
DISABLE_DATABASE_ENVIRONMENT_CHECK=1

So, if you don't set the password (and it is set to the default one), please wait to expose
GitLab to the public internet until the installation is done and you've logged into the server
the first time.

Final steps for preparing the system
There are a few actions left before we start the GitLab application.

Back up your secrets file (where GitLab stores encryption keys):

sudo cp config/secrets.yml /to/somewhere/safe

Install the System V init script:

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab

Installing GitLab Chapter 2

[58]

Active GitLab at boot time:

sudo update-rc.d gitlab defaults 21

Make sure log files are rotated frequently (to safe disk space):

sudo cp lib/support/logrotate/gitlab /etc/logrotate.d/gitlab

Check whether GitLab and its environment are set correctly:

$ sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production

You will get an output such as the following:

System information
System: Debian 9.8
Current User: git
Using RVM: no
Ruby Version: 2.5.5p157
Gem Version: 2.7.6.2
Bundler Version:1.17.3
Rake Version: 12.3.2
Redis Version: 3.2.6
Git Version: 2.11.0
..

Everything on the system is configured to run GitLab and to make it survive a reboot.

Preparing to serve
We are almost ready to start GitLab. First, we need to prepare the frontend to serve content.

Compiling GetText PO files
Use the following command to compile GetText PO (portable object) files. This takes care of
handling string values in different languages (you will see comparable output):

$sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

Created app.js in /home/git/gitlab/app/assets/javascripts/locale/ja
Created app.js in /home/git/gitlab/app/assets/javascripts/locale/eo
Created app.js in /home/git/gitlab/app/assets/javascripts/locale/zh_HK
Created app.js in /home/git/gitlab/app/assets/javascripts/locale/fil_PH
Created app.js in /home/git/gitlab/app/assets/javascripts/locale/ar_SA
Created app.js in /home/git/gitlab/app/assets/javascripts/locale/en
..

Installing GitLab Chapter 2

[59]

Compiling assets
Use the following command to compile assets with Yarn (receiving similar output):

$sudo -u git -H yarn install --production --pure-lockfile
yarn install v1.17.2
[1/5] Validating package.json...
[2/5] Resolving packages...
...
Done in 48.37s.

Finally, use the following command to compile the last assets (similar output):

$sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production
NODE_ENV=production
warning Resolution field "ts-jest@24.0.0" is incompatible with requested
version "ts-jest@^23.10.5"
`yarn:check` finished in 4.2137985 seconds
Created app.js in /home/git/gitlab/app/assets/javascripts/locale/ja
...

Starting your GitLab instance
Use the following command to start your GitLab instance:

sudo service gitlab start

Or use the following command:

sudo /etc/init.d/gitlab restart

If you check the process list with ps aux you should be able to see some Unicorn and
Sidekiq processes appear:

29073 ? Sl 0:16 unicorn_rails master -c /home/git/gitlab/config/unicorn.rb
-E production -D
29094 ? Sl 0:00 unicorn_rails worker[0] -c
/home/git/gitlab/config/unicorn.rb -E production -D
29096 ? Sl 0:00 unicorn_rails worker[1] -c
/home/git/gitlab/config/unicorn.rb -E production -D
29098 ? Sl 0:00 unicorn_rails worker[2] -c
/home/git/gitlab/config/unicorn.rb -E production -D
29112 ? Ssl 0:00 gitlab-workhorse -listenUmask 0 -listenNetwork unix -
listenAddr /home/git/gitlab/tmp/sockets/gitlab-workhorse.socket -
authBackend http://127.0.0.1:8080 -authSocket
/home/git/gitlab/tmp/sockets/gitlab.socket -documentRoot
29119 ? Ssl 0:00 /home/git/gitaly/gitaly /home/git/gitaly/config.toml

Installing GitLab Chapter 2

[60]

29132 ? Sl 0:01 ruby /home/git/gitaly/ruby/bin/gitaly-ruby 29119
/tmp/gitaly-ruby021668259/socket.1
29135 ? Sl 0:01 ruby /home/git/gitaly/ruby/bin/gitaly-ruby 29119
/tmp/gitaly-ruby021668259/socket.0
29143 ? Sl 0:14 sidekiq 5.2.7 gitlab [0 of 10 busy]

The main application is running, so now, we need to put NGINX in front as a reverse
proxy.

NGINX
The role of this component in the GitLab architecture is well described in Chapter 1,
Introducing the GitLab Architecture. It functions as a reverse proxy, and buffers HTTP
requests from clients before they are sent to the Unicorn application server. The default
NGINX that comes with Debian is too old for use with GitLab. That is why we have to
install a newer one (> 1.12.1).

Now, install the latest NGINX:

$ sudo apt-get install -y nginx

Copy the GitLab custom NGINX configuration files that are in our GitLab installation
folder to the NGINX configuration folder:

$ cd /home/gitlab/gitlab;sudo cp lib/support/nginx/gitlab
/etc/nginx/conf.d/gitlab.conf

Change settings if needed (for example, change the server_name
YOUR_SERVER_FQDN line to the DNS name of your GitLab application server):

$ sudo vi /etc/nginx/conf.d/gitlab.conf

Delete the default NGINX configuration files:

sudo rm -f /etc/nginx/conf.d/default*
sudo rm -f /etc/nginx/sites-enabled/default
sudo rm -f /etc/nginx/sites-available/default

Restart NGINX to activate the configuration:

sudo service nginx restart

In case of any errors, look in /var/log/nginx/gitlab_error.log. Now, you should
find GitLab running.

Installing GitLab Chapter 2

[61]

Go to your new GitLab application server in your web browser for your first GitLab login.
Remember that if you did not create a password earlier at Run gitlab:setup, you will be
presented with a form to provide a password for the administrator account. The default
username = 'root' can be changed later. You can set up the password now and log in
again to start doing work!

The installation is finished!

Using it from Docker
The future is in containers. It has been said for years, and now it is almost fact. Running
applications in containers provides many advantages. It requires much less operating
system overhead because containers share the capacity of the underlying operating
system. GitLab provides GitLab Docker images via Docker Hub, the central registry on the
internet for official Docker images.

Both GitLab CE and EE are available and are called gitlab/gitlab-ce and
gitlab/gitlab-ee. GitLab Docker images are feature complete images of GitLab and
they run all the services in a single container.

Containers can run in different environments, but let's start with the following:

Run the image in Docker Engine directly.
Run GitLab using docker-compose.

Currently containers can be run on Linux, macOS and Windows (your mileage will vary).

In the following examples we will run Docker on Debian 10, so you will need sudo to run
the Docker commands. If you run the examples on macOS, sudo is not needed.

You really need Docker software for this. See the official installation docs (https://tuleap-
documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-
docker.html) for how to install it.

Docker is not officially supported on Windows. You might encounter problems with
volume permissions and other unknown issues. Try at your own risk and maybe find help
on Internet Relay Chat (IRC) in the forums.

https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html
https://tuleap-documentation.readthedocs.io/en/latest/developer-guide/quick-start/install-docker.html

Installing GitLab Chapter 2

[62]

Running the image directly
Before running the image, make sure you have a directory available for storing
configuration, logs, and data (or be prepared to lose data). Normally, we create directories
in our home folder, but a better idea is to use the Filesystem Hierarchy Standard (FHS), a
community supported standard of where to put stuff. /src seems perfect for storing
container data (see http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html).
GitLab also uses this convention in their samples.

The GitLab container uses host-mounted volumes to store persistent data:

Local directory Container location Purpose
/srv/gitlab/data /var/opt/gitlab/data For storing application data.
/srv/gitlab/logs /var/log/gitlab For storing logs.
/srv/gitlab/config /etc/gitlab For storing the GitLab configuration files.

Create them like this:

sudo mkdir -p /srv/gitlab/data
sudo mkdir -p /srv/gitlab/logs
sudo mkdir -p /srv/gitlab/config

If you want to use other local directories, that is fine, but the container locations are needed
for GitLab to function correctly.

Now, run the gitlab-ce image:

sudo docker run \
 --hostname gitlab.joustie.nl \
 --publish 443:443 --publish 80:80 --publish 22:22 \
 --name gitlab \
 --volume /srv/gitlab/config:/etc/gitlab \
 --volume /srv/gitlab/logs:/var/log/gitlab \
 --volume /srv/gitlab/data:/var/opt/gitlab \
 gitlab/gitlab-ce:latest

Running it this way will run it in the foreground and you'll be able to see the console. You
can add --detach to run the image in the background.

Starting with --publish (or -p for short) will make the ports required to access SSH,
HTTP, and HTTPS available. All GitLab data will be stored as subdirectories of
/srv/gitlab/.

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/srv.html

Installing GitLab Chapter 2

[63]

Adding --restart always \ as an option will make the container automatically start
after a system reboot.

If you're on SELinux and don't want it cause permission problems, you can put Z after your
volumes (--volume /srv/gitlab/data:/var/opt/gitlab:Z). Docker will then
execute a shell command: chcon -Rt svirt_sandbox_file_t for that location.

When you execute the command you should see Docker fetching the image, this can take a
while:

 Unable to find image 'gitlab/gitlab-ce:latest' locally
latest: Pulling from gitlab/gitlab-ce
f7277927d38a: Downloading [===========================>] 24MB/43.92MB
8d3eac894db4: Download complete
edf72af6d627: Download complete
3e4f86211d23: Download complete
340a842f7859: Downloading [======================>] 11.77MB/26.26MB
357b5acafc50: Download complete
5f6d22e2dbb8: Download complete
5967b74e147b: Download complete
f703d2e0c343: Download complete
11b57921aaaa: Downloading [>] 4.807MB/670.7MB

You can check whether the container is running with the following:

sudo docker ps

You should see a list of running containers, including one that is named gitlab. You can
also see the unique identifier of the containers, this is called the container_id. In this
example, you can now access this container at http://gitlab.joustie.n.

Configuring GitLab after startup
Because the containers provided by GitLab use the official omnibus package, all
configuration actions are centered around the gitlab.rb file.

The software inside the container is provisioned using the omnibus GitLab install, so that
means /etc/gitlab/gitlab.rb is used inside the container. You can edit the file by
entering the container with a shell:

sudo docker exec -it gitlab /bin/bash

Installing GitLab Chapter 2

[64]

Another way is to directly edit the gitlab.rb file in a Docker command:

sudo docker exec -it gitlab vi /etc/gitlab/gitlab.rb

You will have to set external_url to something valid in the gitlab.rb file as well to
make repository links in GitLab work correctly. When you are there, you can check other
settings as well, such as enabling HTTPS, and very importantly, an SMTP server to use for
mail. The Docker image does not have an SMTP server included.

When you are finished making the changes you want, you will have to restart the container
to reconfigure GitLab (it does so every time at restart):

sudo docker restart gitlab

Starting the container with configuration settings as
input
You can start the GitLab container and let it configure itself at startup by adding
the GITLAB_OMNIBUS_CONFIG environment variable to the docker run command.

Put any settings from gitlab.rb in it that you'd like and they will be loaded in the
container start procedure before the internal gitlab.rb file. Some examples from the
omnibus-gitlab template are as follows and you can add it as argument to docker:

--env GITLAB_OMNIBUS_CONFIG="external_url '
external_url 'GENERATED_EXTERNAL_URL' \
gitlab_rails['smtp_enable'] = true \
gitlab_rails['smtp_address'] = "smtp.server" \
gitlab_rails['smtp_port'] = 465"
gitlab_rails['gitlab_shell_ssh_port'] = 2222

Here's an example that sets the external URL and sets the SMTP server address while
starting the container:

sudo docker run --detach \
 --hostname gitlab.joustie.nl \
 --env GITLAB_OMNIBUS_CONFIG="external_url 'http://gitlab.joustie.nl';
gitlab_rails['smtp_address'] = "smtp.server" " \
 --publish 443:443 --publish 80:80 --publish 22:22 \
 --name gitlab \
 --restart always \
 --volume /srv/gitlab/config:/etc/gitlab \
 --volume /srv/gitlab/logs:/var/log/gitlab \
 --volume /srv/gitlab/data:/var/opt/gitlab \
 gitlab/gitlab-ce:latest

Installing GitLab Chapter 2

[65]

You can add more environment variables, which are documented here: https://docs.
gitlab.com/ee/administration/environment_variables.html.

It can take some time for the container to be operational. After starting and configuring,
GitLab is reachable via your browser at https://localhost.

The first time you see the GitLab login page, an admin password has to be set up. After you
have chosen one and submitted it, you can use it to log in.

Upgrading GitLab
Even in a container, upgrading GitLab is sometimes necessary. The easy way is as follows:

Stop the currently active container:1.

sudo docker stop gitlab (or container_id)

Remove the existing instance:2.

sudo docker rm gitlab (or container_id)

Pull the new image:3.

sudo docker pull gitlab/gitlab-ce:latest

Recreate the container in the same way as earlier:4.

sudo docker run --detach \
--hostname gitlab.joustie.nl \
--publish 443:443 --publish 80:80 --publish 22:22 \
--name gitlab \
--restart always \
--volume /srv/gitlab/config:/etc/gitlab \
--volume /srv/gitlab/logs:/var/log/gitlab \
--volume /srv/gitlab/data:/var/opt/gitlab \
gitlab/gitlab-ce:latest

When the container starts again, it will reconfigure and update itself (it will perform a
gitlab-ctl reconfigure).

https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html
https://docs.gitlab.com/ee/administration/environment_variables.html

Installing GitLab Chapter 2

[66]

Run GitLab CE on a different IP address
Using the same --publish mechanism, you can specify not only the port but also the IP
address that Docker will use.

To run the latest GitLab CE on IP-address 192.168.1.1, use the following command:

sudo docker run --detach \
 --hostname gitlab.joustie.nl \
 --publish 192.168.1.1:443:443 \
 --publish 192.168.1.1:80:80 \
 --publish 192.168.1.1:22:22 \
 --name gitlab \
 --restart always \
 --volume /srv/gitlab/config:/etc/gitlab \
 --volume /srv/gitlab/logs:/var/log/gitlab \
 --volume /srv/gitlab/data:/var/opt/gitlab \
 gitlab/gitlab-ce:latest

Now, GitLab is accessible at http://192.168.1.1 and https://192.168.1.1. A
docker-compose.yml example that uses different ports can be found in the Install GitLab
using Docker Compose section.

Debugging the container
Sometimes, a container does not behave the way you expect it to. How can you debug this?
First, you can check the container logs:

sudo docker logs gitlab

Enter the running container:

sudo docker exec -it gitlab /bin/bash

You now have root access to the GitLab container and you can view the situation as if you
were in a VM running omnibus-gitlab.

Install GitLab using Docker Compose
Docker Compose is used to run multiple containers as a single service. By using this tool,
you can easily manage your Docker-based GitLab installation. It can be used to configure,
install, and upgrade the service. It is Python-based and can be installed from https://
docs.docker.com/compose/install/.

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

Installing GitLab Chapter 2

[67]

If you have installed Docker Compose, or already have it on your system, you can build
your service.

Create a docker-compose.yml file (or download an example):

web:
 image: 'gitlab/gitlab-ce:latest'
 restart: always
 hostname: 'gitlab.joustie.nl'
 environment:
 GITLAB_OMNIBUS_CONFIG: |
 external_url 'https://gitlab.joustie.nl'
 ports:
 - '80:8080'
 - '443:4443'
 - '22:2222'
 volumes:
 - '/srv/gitlab/config:/etc/gitlab'
 - '/srv/gitlab/logs:/var/log/gitlab'
 - '/srv/gitlab/data:/var/opt/gitlab'

Check the port settings. This is the same as using --publish 80:9090 or -p
2224:22 with pure docker and not docker-compose.

Make sure you are in the same directory as docker-compose.yml and run the following:

docker-compose up -d

GitLab will start and run an omnibus-gitlab reconfigure during boot to set up GitLab. To
add more configuration settings at startup, follow the instructions mentioned previously to
add directives to the GITLAB_OMNIBUS_CONFIG variable.

Updating GitLab using Docker Compose
We have seen several ways to run Docker containers. You can run them standalone (plain
Docker), or create sets of containers that can work together with services (Docker
Compose). The next step is to orchestrate containers.

Installing GitLab Chapter 2

[68]

Deploying GitLab using Kubernetes
After some years of uncertainty, Google's Kubernetes has emerged as the premier
container orchestration tool. Every major cloud vendor has integration for its API. This
does not automatically mean that it works the same everywhere. Because the product has
been developing so quickly, you will notice differences.

The fastest way to deploy GitLab on a Kubernetes cluster is by using Helm charts.
Avoiding the management of each separate resource on a cluster, Helm bundles these
resources in an application model: a chart. It works like a package management system in
which applications are registered. Information on how to install, configure, and upgrade
this application is contained in this package.

Helm consists of a server called Tiller, which that lives in the Kubernetes cluster, and
Helm, the command-line client that talks to the Tiller server.

GitLab Runner Helm chart
With this chart, you can create scalable GitLab Runners. It will use the Kubernetes executor.
When it receives a new job to process from GitLab CI, a new pod will be created in a
specified namespace.

First, add the Helm repository:

helm repo add gitlab https://charts.gitlab.io helm init

Before you can start this Runner, you need to create a .yml file with parameters (we named
it values.yml). There is a template available at https://gitlab.com/charts/gitlab-
runner/blob/master/values.yaml. The settings are explained in the template file.

The minimum you should fill in is as follows:

gitlabUrl: https://gitlab.home.joustie.nl/
runnerRegistrationToken:
"dE47NAgHgnFRpdd23RiDJ9JOSzBH40mxqLa1B42Ds5eb94ZWebhPydPt9n"

After the configuration of values.yml, you can start the deployment.

https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml
https://gitlab.com/charts/gitlab-runner/blob/master/values.yaml

Installing GitLab Chapter 2

[69]

Deploying of a GitLab Runner to Kubernetes
Initiate the deployment with the following command (replace yournamespace with
something you prefer):

helm install --namespace yournamespace --name gitlab-runner -f values.yml
gitlab/gitlab-runner

After a short time, you should find your Runner listed in the Runners section of the
administration pages in GitLab.

GitLab Helm chart
This is the official and recommended way to install GitLab on a cloud native environment.
This chart contains all the necessary components to get started, and you can scale up
deployments easily. This specific chart is the optimal way to run GitLab in a Kubernetes
cluster.

The default deployment includes the following:

Core GitLab components:
Unicorn: The pre-forking Ruby on Rails web server
GitLab Shell: The Ruby wrapper around Git on the server,
enabling Git-over-SSH
GitLab Workhorse: The smart reverse proxy, taking on big HTTP-
requests
Registry: The GitLab container registry
Sidekiq: The backend services for GitLab, taking care of merge
requests, emails, and other asynchronous jobs
Gitaly: The storage layer abstraction for Git operations

Extra optional dependencies:
Redis: The caching key value store, database multi-tool can speed
up processing
Minio: An object storage server with an Amazon S3 compatible
interface

Bonus material:
An autoscaling, unprivileged GitLab Runner using the
Kubernetes executor: If you run GitLab through Kubernetes, a
dedicated GitLab runner is part of the design.

Installing GitLab Chapter 2

[70]

Automatically provisioned SSL via Let's Encrypt: When you
provide Kubernetes with an administrator and a domain name, the
Let's Encrypt automation builtin can setup SSL for you.

As with the GitLab Docker image, the GitLab chart is a feature completed for the core
product and takes a few minutes to deploy. Deploying GitLab using the Helm chart takes 5
to 10 minutes depending on your hardware or service location. It is also possible to run
certain components outside of the Kubernetes cluster; this is also what you do in
production, normally. It is better to keep your application state out of the cluster.

These are the requirements for deploying GitLab to Kubernetes:

You need Helm version >2.9 and kubectl >1.8 (about 1 minor release version
difference with your cluster).
A Kubernetes cluster using version >1.8 with a minimum of 6 vCPUs and 16 GB
RAM.
The cluster can be a Google GKE, Amazon EKS, or Microsoft AKS-based cluster,
or a local one using Minikube, for example.
You should be able to easily configure a wildcard DNS entry for your domain
(for example, *.example.com) and an external IP.
You can connect and log in to the cluster.
A configured and initialized Helm Tiller running.

To make sure Helm is configured and initialized, run the following command:

$ helm repo add gitlab https://charts.gitlab.io/
$ helm repo update

Deploying GitLab to Kubernetes
To deploy GitLab, the following three parameters are required:

global.host.domain: Should point to your wildcard DNS domain
global.hosts.externalIP: The external IP address for the cluster
certmanager-issues.email: The email address that is used for issuing
certificates (Let's Encrypt)

So, when you only have a few parameters such as these, just run the command:

$ helm upgrade --install gitlab gitlab/gitlab \
--timeout 600 \
--set global.hosts.domain=home.joustie.nl \

Installing GitLab Chapter 2

[71]

--set global.hosts.externalIP=<your external ip> \
--set certmanager-issuer.email=admin@joustie.nl

You can also run a deployment using a values.yml file, just like the GitLab Runners chart.
You can find examples at https://gitlab.com/charts/gitlab/tree/master/examples.

Monitoring the deployment
After running the helm upgrade --install command, it can take several minutes before
output is returned. It should look a bit like the following:

Release "gitlab" does not exist. Installing it now.
NAME: gitlab
LAST DEPLOYED: Wed Jan 2 12:31:31 2019
NAMESPACE: default
STATUS: DEPLOYED
RESOURCES:
==> v1/PersistentVolumeClaim
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
gitlab-minio Bound pvc-fc207fb5-0e81-11e9-b9ef-025000000001 10Gi RWO
hostpath 9s
gitlab-postgresql Bound pvc-fc2158a3-0e81-11e9-b9ef-025000000001 8Gi RWO
hostpath 9s
gitlab-prometheus-server Bound pvc-fc2240b5-0e81-11e9-b9ef-025000000001 8Gi
RWO hostpath 9s
gitlab-redis Bound pvc-fc236cfb-0e81-11e9-b9ef-025000000001 5Gi RWO
hostpath 9s

Afterwards (or during the deployment in another session), you can issue a helm status
gitlab command to see info about the deployment.

Initial login
If everything went well, you will find your installation by adding GitLab to your wildcard
DNS name, in the case of our preceding example, gitlab.home.joustie.nl.

We have not yet specified a root password for the initial administrator user in GitLab.
During the deployment on Kubernetes, a random password was automatically created. You
can fetch this password with the following command from Terminal (replace name with
your deployment name; for us, it is gitlab):

kubectl get secret <name>-gitlab-initial-root-password -
ojsonpath={.data.password} | base64 --decode ; echo

https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples
https://gitlab.com/charts/gitlab/tree/master/examples

Installing GitLab Chapter 2

[72]

Outgoing email
If you do not specify it, there is no outgoing email enabled. You have to enable it by
specifying some settings. The following is the install command if you set the options
right away:

$ helm upgrade --install gitlab gitlab/gitlab \
 --timeout 600 \
 --set global.hosts.domain=home.joustie.nl \
 --set global.hosts.externalIP=<your external ip> \
 --set certmanager-issuer.email=admin@joustie.nl \
 --set global.smtp.enabled=true \
 --set global.smtp.address=smtp.xs4all.nl \
 --set global.smtp.port=25

Also, make sure there is no firewall preventing traffic in between. Clusters on Google
Kubernetes Engine (GKE) have their SMTP ports blocked by default.

Updating GitLab using the Helm chart
Once your GitLab chart is installed, configuration changes and chart updates should be
done using the Helm upgrade.

If you would like to upgrade GitLab or change settings, use the following procedure:

#update the chart
helm repo add gitlab https://charts.gitlab.io/
helm repo update
#get the current values
helm get values gitlab > gitlab.yaml

Edit the gitlab.yaml file, looking at the possible values here: https://docs.gitlab.com/
charts/installation/command-line-options.html.

Save and apply the settings file:

helm upgrade gitlab gitlab/gitlab -f gitlab.yaml

The command should return a lot of output, but it should mention the following:

STATUS: DEPLOYED

https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml
https://gitlab.com/charts/gitlab/blob/master/values.yaml

Installing GitLab Chapter 2

[73]

Uninstalling GitLab using the Helm chart
To uninstall the GitLab chart, run the following:

helm delete gitlab

You can run helm status afterwards to see if the action has been completed.

Creating droplets on DigitalOcean
DigitalOcean is a cloud provider, originating from New York. It has been a darling of
developers for years. It offers an API, integrations, and affordable pricing to run your
application workloads and VMs.

There are two ways of installing GitLab on DigitalOcean. You can create VMs (droplets)
yourself and configure them using the omnibus installer or install them from source
yourself. An even better way is to use the predefined GitLab droplet image that is already
available on the site. When creating a droplet, you can specify this image.

When you log in to DigitalOcean, you can go to your droplets page and create a new one:

Installing GitLab Chapter 2

[74]

Determine the options for a droplet:

After logging in, you will be asked to set some options:

Installing GitLab Chapter 2

[75]

The droplet is ready. The system will reboot and reconfigure itself. If the login does not
work, log in via SSH as a root to your droplet and execute the following command:

tail -100 /var/log/gitlab_set_pass.log

Take a look at this:

Could not create the default administrator account:
–> Password is too short (minimum is 8 characters)

If this is visible, we have to try to set the password again using one of the methods
available in the omnibus package. Add the following line to
the /etc/gitlab/gitlab.rb file:

gitlab_rails[‘initial_root_password'] = ‘nonstandardpassword'

Then, execute the following in order to re-seed the database (it is empty, so that doesn't
matter) and reset the admin password:

gitlab-rake gitlab:setup

After some time, you should receive the following output:

Administrator account created:
login: root password: You'll be prompted to create one on your first visit.

If you go to the URL of your new GitLab instance, you can set the password as shown:

Enjoy your GitLab!

Installing GitLab Chapter 2

[76]

Summary
In this chapter, we discussed the different ways of installing GitLab. The Linux platform
was the chosen OS for which we provided instructions and examples. We started with the
recommended way of installing for most organizations, using the omnibus package.

It is also possible to install GitLab from scratch and to run it from source.

It is also possible to run GitLab from a Docker container. We also showed you how to
update Docker-based GitLab installs and gave an example of using Docker Compose to
create a multi-container installation. Finally, we talked about the fact that, when scaling,
you probably would like several containers deployed and managed. We showed you how
to achieve this with Kubernetes as the orchestration tool.

In the next chapter, we will dive into the process of configuring GitLab after the initial
installation.

Questions
What is the recommended way of installing GitLab?1.
At the least, which ports do you need to open on your firewall?2.
On what platforms can you install GitLab using the omnibus package?3.
What is the basic administration command you use in an omnibus-based install?4.
What version of Git is the minimum you need on a source-based GitLab install?5.
What PostgreSQL extension do you need to enable for GitLab in a source-based6.
GitLab install?
What is the name of the official GitLab CE Docker images?7.
What is the location of site-specific data according to Linux Filesystem8.
Hierarchy (LFH)?
What programming language do you need to have installed to run Docker9.
Compose?
What is the recommended way of deploying GitLab components to Kubernetes?10.

Installing GitLab Chapter 2

[77]

Further reading
Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker: https://www.
packtpub.com/in/networking-and-servers/learn-docker-fundamentals-
docker-18x

Develop and Operate Microservices on Kubernetes by Martin Helmich: https://www.
packtpub.com/in/virtualization-and-cloud/develop-and-operate-
microservices-kubernetes-video

GitLab install documentation: https://about.gitlab.com/install/

https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://about.gitlab.com/install/

3
Configuring GitLab Using the

Web UI
After installing GitLab in the previous chapter, you probably have a running instance. But
how can you manage it? You need to know how to configure the software. This chapter will
explain how this is achieved for the different kinds of GitLab installations that are available.

The following topics will be covered in this chapter:

Configuring GitLab settings at the instance level
Configuring GitLab settings at the group level
Configuring GitLab settings at the project level

Technical requirements
To manage omnibus installs, you need to use a central configuration file called gitlab.rb.
You need to create it yourself or copy an example of one. A template of this configuration
file is available at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/
gitlab-config-template/gitlab.rb.template. Please note that it isn't updated after
upgrades. We will quote and discuss parts of this file in this chapter.

To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with the examples that are available,
at https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter03.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter03

Configuring GitLab Using the Web UI Chapter 3

[79]

Configuring GitLab settings at the instance
level
When you log on to GitLab as an administrator, you will notice a tool icon in the top right
of the menu:

When you click on that, the administrator page will load, which you can use to access
instance-level settings. The base page provides an overview of active projects, users, and
groups:

On the left-hand side, there are several global administration options. Let's go through
them.

Configuring GitLab Using the Web UI Chapter 3

[80]

Menu options
 The options are grouped, and some items can even be expanded:

Dashboard: Dashboard gives you some insight into the number of projects,
users, and groups that are in your GitLab instance. You can create new ones from
this screen. There is also other interesting information in the form of statistics,
where you can get an overview of active features and installed components. If
you enabled exposing instance information to GitLab, it will also mention
whether you should upgrade your instance to a newer version of GitLab.
Projects: In the Projects pane, you can search for projects and create new ones.
For the search option, there are some filters available.
Users: The Users pane offers the same functionality as the Projects pane, that is,
searching for users with advanced filtering and being able to create new users.
Groups: The Groups pane is identical to the previous panes in terms of its
features, but without fancy filters.
Jobs: The Jobs pane offers you insight into continuous integration/continuous
deployment (CI/CD) jobs that are pending, running, or finished.
Runners: In this section of the administration page, options and views on CI/CD
GitLab runners are available.
Gitaly servers: By default, there is only one Gitaly server, and it is shown here.
However, there could be more, depending on your setup.

Monitoring
The monitoring section offers interesting bits of information that are needed so that you can
administer your GitLab instance:

System information: CPU, memory, and other metrics.
Background Jobs: GitLab integrated the Sidekiq statistics gem into the
application, and it can be viewed here.
Logs: In this section, you can view 2,000 lines of information from the most
important GitLab log files (unicorn, gitlab-shell, Sidekiq, and so on).
Health check: This is a very interesting page for sysadmins. Here, you will find
endpoints that will give some insight into the health of the running GitLab
instance. There is also a token present, which you will need to send as a
parameter if your monitoring software wants to scrape the page.

Configuring GitLab Using the Web UI Chapter 3

[81]

Requests Profiles: This is only interesting to developers or testers. Here, you can
send a header to GitLab for use in request profiling.
Audit Log: If you have an enterprise license, you can find audit events here and
filter them.

Messages
Your GitLab instance has a facility where you can send messages to all of your users. These
broadcasts can come in handy if you want to inform your users about system-wide events,
such as upgrades and scheduled downtime. The following is the Admin page, which you
can find in the side menu:

After you've scheduled a new message, it can be reused later as well:

Configuring GitLab Using the Web UI Chapter 3

[82]

System hooks
GitLab can perform HTTP POST requests on the system level and act on several events.

A standard event is raised when you're creating a new project or user. Additionally, it can
send other types of events as well. Just add a destination URL and (optionally) a secret
token:

When you have configured your system hook, there is a drop-down list with a test to check
whether it works by calling the URL.

Configuring GitLab Using the Web UI Chapter 3

[83]

Plugins
On this page, you also have the option to configure installed plugins. This basically fires a
locally installed program instead of calling a URL with parameters.

It requires you to place the plugin code in /opt/gitlab/embedded/service/gitlab-
rails/plugins, and it has to be written in a certain way. After installation, the plugin can
be run as a hook.

Applications
In this section of the administration page, you have the option to register third-party
applications in order to use GitLab as an OAuth authorization provider.

Open Authorization (OAuth) is an open standard for authorization. Users can give a
program or website access to their private data that's kept on another website without
revealing their username and password.

To register an application, you need to provide a name, callback URL, and set a few
options.

Trusted means that a token is exchanged based on the already validated resource owner's
credentials. The user authorization step is subsequently skipped for this application when
it's used.

Some other scopes are also defined that allow a given application to perform various
actions. These are as follows:

API: Grants complete read and write access to the API, including all groups and
projects.
read_user: Grants read-only access to the authenticated user's profile through
the /user API endpoint, which includes username, public email, and full name.
It also grants access to read-only API endpoints under /users.
sudo: Grants permission to perform API actions as any user in the system when
authenticated as an admin user.

Configuring GitLab Using the Web UI Chapter 3

[84]

read_repository: Grants read-only access to repositories on private projects
using Git over HTTP (not using the API).
openid: Grants permission to authenticate with GitLab using OpenID Connect.
It also gives read-only access to the user's profile and group memberships.

You can also revoke registration if you wish to. GitLab uses doorkeeper-
gem, which can be found at https://github.com/doorkeeper-gem/
doorkeeper, to provide this functionality.

Abuse reports
There are several places in the GitLab web interface where, as a user, you can file and
report abuse. You can find buttons to file a report in the following sections:

Comments
Issues and merge requests
The profile page of a user (refer to the following screenshot):

https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper
https://github.com/doorkeeper-gem/doorkeeper

Configuring GitLab Using the Web UI Chapter 3

[85]

When you click the Report abuse button, the following form will appear:

If you click on the Send report button, an administrator will be notified, and he or she will
find the abuse report in the Abuse Reports section of the administration pages:

License
If you are using GitLab Enterprise Edition, this is the place where you manage your license.
You can either upload a file or insert the appropriate license key. You can browse to GitLab
to buy a new license.

Configuring GitLab Using the Web UI Chapter 3

[86]

Kubernetes
In this section, you can add an instance-wide Kubernetes cluster, which will be used to
create deployment environments. We will discuss this option in Chapter 11, The Release and
Configure Phase.

Push rules
In this section, you can define all kinds of rules that will allow or disallow Git pushes:

Geo
When you have an Enterprise license and want to configure replicas of your GitLab
instance, this is the place to use. We will discuss Geo in Chapter 22, Using Geo to Create
Distributed Read-Only Copies of GitLab.

Configuring GitLab Using the Web UI Chapter 3

[87]

Deploy Keys
In this section, you can register SSH keys, which are known as Global Shared Deploy keys.
They allow read-only or read-write (if enabled) access to be configured on any repository in
the entire GitLab installation. When the administrator has registered them here, you can
assign them in your project, as shown in the following screenshot:

This feature can be used by a remote CI/CD server to check out code.

Service templates
Project services allow you to integrate GitLab with other third-party applications. They
resemble plugins that you can find in other systems. They allow for a lot of freedom in
terms of adding functionality to GitLab. In the Service Templates section, you can edit
information for predefined templates. The repository owners then have to configure less
information if they want to enable a service integration for their repository.

Configuring GitLab Using the Web UI Chapter 3

[88]

Appearance
You can define some cosmetic aspects of your GitLab instance on the Appearance settings
page:

Configuring GitLab Using the Web UI Chapter 3

[89]

If, for example, you want to greet your users with a nice logo on the front page, you can
change the logo by uploading a new one. You can do this by clicking the Choose
File button near the Logo section. After you have done this, log out. You will be redirected
to the front page:

Settings
This section has a lot of detailed options, all of which we will discuss here.

General
This part of the administration panel deals with settings that are not easily put into a group.

Visibility and access controls
Here, you define the default authorizations and permissions for users. There are three basic
options. For instance, you can make projects private, which means that only you or people
you grant access to can see when you create a new project. The internal level means only
logged-in users can see your project (read-only). Public is the widest access level and allows
anyone to see your project (but not write to it). The same authorizations can be set for
snippets and groups. You can also determine what sources can be imported.

Configuring GitLab Using the Web UI Chapter 3

[90]

There are a lot of import modules available, but maybe you want to limit those. Another
import option is to allow projects to be exported. There are several functions that can help
users with this. If this isn't something you would like to cater for, then you can disable it
here. GitLab supports both Git client access protocols (SSH and HTTP). You can also
disable them in this section if you want to. Finally, you can control what kind of SSH keys
can be used for Git SSH. Is RSA too insecure? Just disable it.

Account and limit
In this section, you can set options such as session expiration (the default is 20 minutes),
project limits, and maximum attachment sizes. The default project limit is set to 100,000,
while the maximum size of a repository is not set by default. The attachment size is 10 MB.
You can also enable Gravatars for accounts, which means that an image that is uploaded to
gravatar.com can function as your personal icon. GitLab can act as an OAuth backend,
and you can allow normal users to register new applications by using it.

You can also configure the way new users are handled. They can be defined as external
users. This means that new users can only access specific projects that they are granted
access to. They can't create new projects. Optionally, you can define exceptions for that rule
with a regular expression. The final option is to enable a prompt to let users know that they
haven't uploaded public SSH keys yet.

Diff limits
In this section, you can set the maximum size a diff patch can get to before it cannot be
displayed in the normal diff view. If this size is reached, a link to a blob view will be
presented.

Sign-up restrictions
In a default installation, a form is available on the GitLab login page so that you can sign up
if you don't have an account. You can disable the signup pages here, as well as edit a
whitelist and blacklist to deny access to certain domains upfront. You can also specify
whether you want an email to be sent after the signup procedure.

Some text will be shown to the user after signup has completed.

Configuring GitLab Using the Web UI Chapter 3

[91]

Sign-in restrictions
These settings cover the following restrictions:

Enable or disable logging in to the web interface with a password (without it,
you need a third-party authentication provider such as Google)
Enable or disable password authentication for Git over HTTPS (without it, a
personal access token is needed)
Enable or disable two-factor authentication (with a grace period that determines
how long a user can wait during configuration)

It is possible to use a hardware token device as a second factor, as you can see in the
following screenshot (this only works in Chrome):

You can also choose to use a code generator app such as Google Authentication:

Configuring GitLab Using the Web UI Chapter 3

[92]

You can also set a home page URL here, which is where non-logged-in users will be
redirected to. In the same way, you can define an after-sign-out path, where users will be
led to when they sign out.

Finally, it's also possible to set a standard sign-in text to be visible on the login page.

Terms of service and privacy policy
If you use GitLab for an organization that uses strict terms, you can make sure that your
users accept a policy that you can enter here, in a nice markdown-formatted text box.

External authentication
For some installations, it could be crucial to let external systems have more influence on the
access policies in GitLab. For this, you can specify an external authorization service that
checks the user's information and the classification label that has been given to a project.
Based on that query, access may or may not be granted. If you enable this, all the pages that
use cross-project data won't work anymore (such as snippets and activity).

Web Terminal
This is a recent feature, and is where you can access a terminal via a web browser (part of a
pipeline). Here, you can set a timeout on the session time for this terminal. Keeping it to
zero means that it will try the session indefinitely.

Web IDE
Web IDE is a feature that is also new and in full development. This book is actually typed
in it, and it works better than most web editors. The main option that you can control from
the settings page is the feature toggle, which allows client-side JavaScript projects to enable
live preview functionality using CodeSandbox.

For more information about project access, go to https://codesandbox.
io.

https://codesandbox.io
https://codesandbox.io
https://codesandbox.io
https://codesandbox.io
https://codesandbox.io
https://codesandbox.io

Configuring GitLab Using the Web UI Chapter 3

[93]

Integrations
One of the ways to advance GitLab as a product is to offer several ways to integrate with
other products. This also aligns with the Unix and open source philosophy of creating
small, interoperable utilities. On a technical level, there are three ways to accomplish this:

Using webhooks (event mechanisms, asynchronous, and so on. For more
information, go to https://gitlab.com/gitlab-org/gitlab-ce/blob/master/
doc/web_hooks/web_hooks.md).
Using the GitLab API (proactively get information from GitLab).
Using project integration (running from a repository in GitLab). In the settings,
four options are available: Elasticsearch, PlantUML, Snowplow, and the ability to
view third-party offers.

Elasticsearch
Only available in Enterprise edition, this search engine integration feature is really
powerful, but is a subject on its own. It offers a full-text search option for GitLab so that you
can search for text throughout your source code repositories. You will need to install the
search program, which has a HTTP web interface on another server, and specify the
connection settings (the URL):

https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md
https://gitlab.com/gitlab-org/gitlab-ce/blob/master/doc/web_hooks/web_hooks.md

Configuring GitLab Using the Web UI Chapter 3

[94]

You can also limit what will be indexed:

Another option is to connect to an Elasticsearch instance that you are running in the
Amazon cloud. You can specify connection settings here as well if you have this set up:

You can find more information on this at http://elastic.co.

PlantUML
Here, you can define the URL for PlantUML (this is an API integration).

Third-party offers
This setting lets you opt out of third-party offerings. An example of such an offer would be
to get free Google Cloud credits so that you can use Google's Kubernetes platform.

http://elastic.co
http://elastic.co
http://elastic.co
http://elastic.co
http://elastic.co
http://elastic.co
http://elastic.co

Configuring GitLab Using the Web UI Chapter 3

[95]

Snowplow
Again, Snowplow is an Enterprise feature. Some companies want to track custom events in
GitLab. With Snowplow, you can use this big data platform to collect and analyze data. If
you enable this integration, you have to provide a collector URI, a site ID, and a cookie
domain.

Repository
Here, you will find options that are generic for all repositories.

Repository mirror
With GitLab, you can create repository mirrors. This means that, after an initial
synchronization, the content (and metadata, if possible) is kept up to date with the remote
source. The sync job will be triggered automatically and will time out after 15 minutes. This
setting determines whether a user can set up mirrors. If it's disabled, only administrators
can perform this task.

Repository storage
The most important settings handle the way storage is used. Instead of using folder
structures with names, you can use hashed values as directory names for projects. This
way, when you're moving projects, the folder isn't moved on an OS level – the reference to
the hash is changed in the database instead. Keeping a hash-based reference tree and
searching is much faster than traversing a folder tree by name.

Secondly, you can specify alternate storage locations where new projects are stored. If there
is more than one location, it will alternate between them in no particular order. The location
that shows up in the chooser depends on what storage paths were defined in gitlab.rb
(for omnibus installations) or gitlab.ym (source-based setups).

The settings for the storage circuit breaker are found here as well. This is used to handle
failures of the underlying storage GitLab uses. When you're using network filesystems such
as Network File System (NFS), locking issues can occur, which eventually make the whole
system hang indefinitely.

Configuring GitLab Using the Web UI Chapter 3

[96]

Repository maintenance
Git has a special integrity checking feature called fsck. Just like the Filesystem Consistency
Check (fsck) for filesystems, it can verify a structure and tell us whether it's compromised.
The name of this Git function was chosen because Git was initially built as a filesystem. A
filesystem is classed as a graph model, and Git implements this as tree and blob objects.
Because all of the items are check-summed, fsck can verify the integrity of the objects and
their relations. This graph is depicted in the following diagram:

Changes between files in a repository are saved as deltas and packed together in pack files,
which are then compressed. This also happens to other objects in the repository hierarchy.
In short, this means that the graph model has been enhanced to make Git operations faster
and more efficient on your computer, and to save disk space. Sometimes, after commit --
amend or git rebase, objects such as commits become unreachable (there's no parent
SHA). All the preceding use cases are candidates for the Git garbage collection function:
git gc (https://git-scm.com/docs/git-gc). It is recommended to run this function on
your Git repositories regularly.

In the GitLab settings, you can control the two ways in which Git is being used on the
GitLab server in order to maintain repository hierarchies. The first option is that you can
enable periodic repository checks with git fsck. Letting GitLab do this ensures that you
can spot and possibly repair disk corruption issues you wouldn't easily find normally if
you were to process all the files.

GitLab can also do housekeeping. It should run periodically to prevent the corruption of
repositories. Unfortunately, it can also generate false alarms.

https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc

Configuring GitLab Using the Web UI Chapter 3

[97]

The second option is that you can control the way housekeeping is done on the server in
order to make Git repositories more efficient and fast. You can enable and control
when git gc is performed on the GitLab server. Another option for git pack operations
is to let them use bitmap indexes. This could result in much faster cloning (but more disk
space being used). The parameters for housekeeping are the amount of times a repository is
pushed before git repack (incremental), git repack (full), and git gc is performed.

Templates
From GitLab 11.x onward, you can define a special directory that will provide templates for
all of GitLab. You can also create your own.

The custom project templates settings let you specify which group is the default group so
that you can provide templates.

CI/CD
This page contains several configuration options for Continuous Integration (CI) and
Continuous Deployment (CD) using GitLab.

Auto DevOps settings
As of GitLab 11.3, Auto DevOps is automatically enabled for all projects. When the build
process is triggered for a project and a pipeline is created, the Auto DevOps feature will be
disabled for the project if the pipeline fails. If an alternative .gitlab-ci.yml file is located
in the project, it will use that instead. You can override the default Auto DevOps settings
here and disable them:

Configuring GitLab Using the Web UI Chapter 3

[98]

Shared runner settings
One of the key components of CI/CD is the runners. In this section, you can enable shared
runners for all new projects, which means that any shared runner could end up building
your code. There is a security aspect to this because shared runners could exist that aren't
using a stateless mechanism. They could be running your job, and not clean up the artifacts,
and get a new build job. This is probably is not what you want. Your data could be
compromised by another build project.

Therefore, another option is to set some warning text for shared runners that communicate
so that you can ensure your shared runners are under control:

When runners build artifacts, the results can be uploaded and viewed after the pipeline has
finished. You may want to set a certain limit on the size of the combined artifacts that get
uploaded as a ZIP file to the GitLab CI.

You can also specify how long artifacts should stay available after the build. This is
controlled by the default artifact expiration time:

When an artifact reaches this age, it is deleted in the periodic expiration task. As we can see
in the following screenshot, it runs every hour:

Configuring GitLab Using the Web UI Chapter 3

[99]

Container registry
GitLab can also function as a container registry. By this, we mean it can store images that
you create on your workstation or inside of GitLab runner pipelines. In this section of the
admin area, you can specify how long an authorization token remains valid. The default is
five minutes.

Reporting
Most people have an easy time identifying or explaining the term reporting. I personally
don't understand how GitLab grouped certain options under this subject. To me, the first
one, that is, spam and anti-bot protection, should belong to a security or privacy part of the
settings.

Spam and anti-bot protection
GitLab is able to use reCAPTCHA and Akismet to handle abusive traffic. If you enable this
setting, you need a site key and a private key, both of which can be generated at http://
www.google.com/recaptcha. In this way, you raise another barrier against spammers
creating users in an automated way. If you register, you have to prove you are a human by
answering specific questions.

In a similar manner, Akismet can help you protect your issues in GitLab from spammers.
With the advent of weblogs and the possibility to comment, a new spam technique
emerged called comment spam. Spammers try to influence readers with massive amounts
of comments. Akismet was established as an extra check (GitLab calls its API) to prevent
automated comments (issues in GitLab).

As an extra security measure, there's the option to restrict simultaneous logins from
multiple IPs. You can even set a maximum number of IPs a user can connect from by using
an IP expiration time.

Abuse reports
Here, you can set an email address that abuse reports can be sent to. The option to create an
abuse report is scattered throughout GitLab.

http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha
http://www.google.com/recaptcha

Configuring GitLab Using the Web UI Chapter 3

[100]

Error reporting and logging
In general, there are numerous log files for all kinds of services that GitLab is running. In
this section, you can specify logging and reporting for clients (also known as browsers). The
GitLab frontend JavaScript application that runs in your browser has the option to use
Sentry (https://sentry.io/welcome/). By using this, you can monitor and proactively
catch errors from your users and act accordingly.

Metrics and profiling
Administrators or owners of a GitLab system like to know how their system is performing
– not only at an OS level, but also in terms of functionality. For instance, information about
how long certain operations take to complete is very important. These metrics are available
in GitLab, but you need to do some configuration to make these numbers available. There
are several ways to retrieve this data from GitLab, and it's here where you can specify
details about sources of information.

Metrics – InfluxDB
The first system that can operate as a backend store for metrics is InfluxDB. This is a special
kind of database that stores time series data. Before you can use this feature, you will have
to set up this database on a separate server. It is too heavy to run on the same GitLab
machine. Instructions on how to configure this can be found at https://docs.gitlab.com/
ee/administration/monitoring/performance/influxdb_configuration.html. When you
enable InfluxDB metrics, it will set up a User Datagram Protocol (UDP) stream to the
InfluxDB host that will carry all kinds of event information. You can fine-tune the
connection pool size, the connection timeout, and so on to make sure that you don't
generate too much data. After changing this setting, you will have to restart.

Metrics – Prometheus
The preferred time series database for GitLab as of 2018 is Prometheus. Its scraping
endpoint for GitLab can be enabled here. You will need to restart GitLab after you change
it. A Prometheus server is bundled in omnibus-gitlab itself.

https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html
https://docs.gitlab.com/ee/administration/monitoring/performance/influxdb_configuration.html

Configuring GitLab Using the Web UI Chapter 3

[101]

Profiling – Performance Bar
Sometimes, you like to know how GitLab's performance is when it's running in a browser,
or you want to see which part of a GitLab request takes the most time to complete. Enter
Profiling-Performance Bar, which you can enable for certain groups. Once the
Performance Bar is enabled, you will need to press the P + B keyboard shortcut to actually
display it:

Usage statistics
In this section of the settings, you can enable or disable two sets of information that can be
collected by GitLab by default. You can also choose to only let the information be viewable
by instance admins. These types of information are as follows:

Version check (you will see Update ASAP in the overview when a new version is
available)
Usage ping (to improve GitLab and its user experience)
Can share data to the public or only admins
Check the Preview payload button to view other data that's shared in this ping

Pseudonymizer data collection
When enabled, this option will make sure that GitLab writes anonymized information to a
comma-separated values file. This file will then be uploaded to the S3 storage bucket that
you specify in your configuration files (gitlab.rb for omnibus-gitlab installs and
gitlab.yml for source-based installs).

Configuring GitLab Using the Web UI Chapter 3

[102]

Network
In this section, you can control some of the options that influence network performance and
communication.

Performance optimization
Here, you can disable writing to an authorized keys file and let GitLab read authorized
keys straight from the database instead of via a file. This helps speed up the authorization
phase of Git SSH.

User and IP rate limits
Here, you can throttle for web and API requests. You also have the option to make a
difference between authenticated and anonymous requests.

Outbound requests
By default, webhooks that are created in the system aren't allowed to go out of the local IP
subnet. With this option, you can allow hooks to go out.

Geo
In this section, you can set some Geo preferences, such as the timeout after which the
communication with a secondary instance is considered lost. Another setting that's
available allows you to list the IPs and networks that can connect and pretend they are
secondaries.

Preferences
These settings are general and are related to different subjects.

Email
In the email section, you can make emails come straight from originators, who, for instance,
create issues or merge requests. The second option you can control is whether GitLab sends
emails in HTML format.

Configuring GitLab Using the Web UI Chapter 3

[103]

Help page
You can also customize the way the Help page for GitLab is presented. There's the option
to provide some custom text, which will be displayed on top of the Help page:

The following is a screenshot of the standard Help page:

Configuring GitLab Using the Web UI Chapter 3

[104]

Let's make some changes by adding This is a help page.:

 The result will be as follows:

Pages
If you use the GitLab Pages feature, you can specify the maximum size of pages. You can
set it to zero if you want the size to be unlimited. You can also allow users to prove that
they own a domain before you serve a page for it:

Configuring GitLab Using the Web UI Chapter 3

[105]

Real-time features
The GitLab web interface gives you the option to poll for real-time events, like it does when
you press the Merge button on a merge request. You can set a multiplier for this here so
that it polls less often (or more often, depending on what you want).

Gitaly
Regarding Gitaly, you can control some of its timings here. If Gitaly is being slow, you'll
want it to time out for certain requests, because otherwise the operation can bring down the
whole GitLab instance. Since Gitaly is the interface to the repositories, think of filesystems
or nodes not responding. Very bad things can happen when locks occur or when network
issues prevent data transfers. It's better to know when to cut the cord.

Localization
This is a big section of the settings since there are many localization settings for software
products. The only one that is exposed in this screen is Default first day of the week:

This depends on your geographical location.

Configuring GitLab settings at the group
level
The admin area is only accessible to users with the admin role, but other roles can configure
settings too. If you, as a user, have been granted permission to add groups, you can change
the settings of the groups you have created. If you navigate to Your Groups from the top-
level menu, you can access the settings from the left-hand side menu.

Configuring GitLab Using the Web UI Chapter 3

[106]

Here, you will see a submenu with the items that you can configure. It looks a lot like the
UI in the admin area but is, of course, scoped to the group:

In GitLab 12.0, a new interesting feature has been added to the General pane for group
settings: Restrict address by IP address. It is an Enterprise feature and, by using it, you can
make sure that certain IP addresses aren't allowed to access group content. In the following
screenshot, you can see that 192.168.1.0/24 is the only IP range that's allowed to see the
group content:

For instance, you don't want software to be downloaded from a VPN.

Configuring GitLab Using the Web UI Chapter 3

[107]

Configuring GitLab settings at the project
level
In the previous sections, we saw that we can adjust the settings at the instance level in the
admin area, as well as at the group level. There are also options for setting an individual
project. If you browse to one of your projects, you will see a Settings menu on the left:

General
The General menu provides some specific settings that aren't found anywhere else. Let's
look at the most important ones.

Configuring GitLab Using the Web UI Chapter 3

[108]

Naming, topics, avatar
Under the General settings, you can find the fields:

Configuring GitLab Using the Web UI Chapter 3

[109]

Visibility, project features, permissions
A very important part of these settings is the Visibility, project features, permissions
sections. You can enable or disable certain features, as well as determine who is allowed to
do what:

Merge requests
For an individual project, you can define merge request behavior. For example, you can
define how GitLab will execute merges on the server. For every executed merge request,
there is a Git session on the server running the same Git binary that you have on your
workstation. For instance, you can specify that the server side never does a merge commit:

Configuring GitLab Using the Web UI Chapter 3

[110]

In version 12.0 of GitLab, the concept of merge trains was added. If you enable this, all the
merges must pass in sequence, and your merge will be a part of this train. The merges only
succeed as a whole, and this use case is common in Enterprise environments where
different teams work on the same product. In future versions, this feature will be enabled
by default.

Configuring GitLab Using the Web UI Chapter 3

[111]

Summary
In this chapter, we discussed how to configure an existing GitLab application instance via
the web interface. The administration pages of GitLab give you a lot of control over your
instance. After going through those pages, we explained the various items that can be
managed.

In the next chapter, we will take a look at configuring GitLab through a regular Terminal
interface without a web browser.

Questions
What icon is used to represent the administration section?1.
Which three items feature prominently on the admin dashboard?2.
What is the maximum size of an uploaded logo image?3.
Which metrics backend can be configured?4.
What product is used to enable live preview functionality?5.
What UML tool can be integrated with GitLab?6.
What mechanism is used to prevent network storage from hanging GitLab?7.
What process can help preserve repository integrity?8.
Which CI/CD feature is enabled by default?9.
What value has to be set in GitLab Pages to enable unlimited size?10.

Further reading
Getting Started with Kubernetes - Third Edition, by Jesse White and Jonathan
Baier: https://www.packtpub.com/in/virtualization-and-cloud/getting-
started-kubernetes-third-edition

Develop and Operate Microservices on Kubernetes, by Martin Helmich: https://www.
packtpub.com/virtualization-and-cloud/develop-and-operate-
microservices-kubernetes-video

Docker Cookbook - Second Edition, by Neependra K Khare, Jeeva S. Chelladhurai, and
Ken Cochrane: https://www.packtpub.com/in/virtualization-and-cloud/
docker-cookbook-second-edition

https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition

4
Configuring GitLab from the

Terminal
After installing GitLab, you probably have a running instance. So, how do you manage it?
In the previous chapter, we showed you the options that can be managed through the web
interface. But there are many more options that can be set only through the configuration
files on the server. You need to know how to configure the software in a regular terminal.
This chapter will explain how this is achieved for the different types of GitLab installations.

The following topics will be covered in this chapter:

Configuring omnibus installations from the terminal
Configuring source installations
Reconfiguring GitLab Docker containers
Changing GitLab in a Kubernetes environment

Technical requirements
For managing omnibus installations, there is one central configuration file called
gitlab.rb. You need to create it or copy an example. There is a template available. You
can find it at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/
gitlab-config-template/gitlab.rb.template. It is not updated after upgrades.
Throughout this chapter, we will quote and discuss parts of this file.

To follow along with the instructions in this chapter, please download the Git repository
available at GitHub:
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter04.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter04

Configuring GitLab from the Terminal Chapter 4

[113]

You will also need the following:

Docker: https://www.docker.com

kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/

Configuring omnibus and GitLab
installations from the terminal
You can find the template for gitlab.rb at https://gitlab.com/gitlab-org/omnibus-
gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template. It is not
updated after upgrades.

You can also use omnibus or GitLab to implement high availability (HA) for your GitLab
installation.

There is a part in gitlab.rb where you can define the role of the GitLab instance you are
configuring. If there are no roles defined by default, omnibus will configure your server to
host all the core components of GitLab.

For instance, add the following line of code if your instance will run as a Redis master, and
have the Redis sentinel agent running:

 roles ['redis_sentinel_role', 'redis_master_role']

The following roles are available:

redis_sentinel_role: Enables the sentinel service only.
redis_master_role: Enables Redis and monitoring, and allows you to
configure the master password.
redis_slave_role: Enables the Redis service and monitoring.
geo_primary_role: Configures the database for replication and prepares the
application server as geo primary.
geo_secondary_role: Prepares the database for replication and sets the
application up as secondary geo.
postgres_role: Switches on the postgresql, repmgr, and consul services on
the machine. Sets up only these components.
pgbouncer_role: This role adds the PgBouncer software for the database load-
balancing feature.

https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template

Configuring GitLab from the Terminal Chapter 4

[114]

After editing, you have to issue a gitlab-ctl reconfigure to apply the settings.

Configuring source installations
The main configuration file to change is gitlab.yml, which is usually found in
/home/git/gitlab/config. It follows the .yml standard and this has several
implications. The first one is that indentation is very important. If you just copy and paste
configuration, you will find that it can mess up the file contents. Another important feature
that is used in the gitlab.yml file is utilizing anchors and aliases (&base) to specify
different configuration targets. In practice, this means that the main configuration for all
environments is specified in the config file (production: &base).

Below the production: &base target , the other environments are specified, and they
refer to &base but override certain key-value pairs. How does GitLab know which
environment information should be used? That is determined by the RAILS_ENV variable
used when installing and starting GitLab.

We have put an example configuration file in repository of this book (https://github.com/
PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.
example).

The configuration file has several sections, and we'll run through them.

GitLab app settings
This section of the configuration file is mainly used to define the global settings for the
whole GitLab application.

The first settings you will encounter are mainly for the web server component (Unicorn).
You can specify which FQDN to use for the hostname, the port on which to listen to, and
whether to use HTTPS:

 host: localhost
 port: 80
 https: false

You can set the port to 443 and HTTPS to true if you want to use HTTPS. If you have a
different ssh_host in your setup, you can specify it as well (If you want Git-SSH to run on
the same server, that you don't need to specify this):

 ssh_host: ssh.host_example.com

https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example
https://github.com/PacktPublishing/Mastering-GitLab-12/blob/master/Chapter04/config_gitlab.yml.example

Configuring GitLab from the Terminal Chapter 4

[115]

Furthermore, if you want to use relative URLs (/mygitlab/ for instance):

 relative_url_root: /gitlab

You can also change the option regarding which OS-user to use for running the web server
processes:

user: git

The next setting is about dates and times, and you can specify the timezone to be used
throughout the entire application:

 time_zone: 'UTC'

The next bundle of settings handles email. You can disable GitLab's use of email entirely or
specify who the sender and the subject, among other things:

email_enabled: true
 email_from: example@example.com
 email_display_name: GitLab
 email_reply_to: noreply@example.com
 email_subject_suffix: ''

The next setting determines whether new users can create groups (be careful, as existing
users retain this privilege).

default_can_create_group: false

If you want old users to be also stripped of this privilege, one way to do it is to use the Rails
console:

irb(main):012:0> @users.each do |u|
 irb(main):013:1* u.can_create_group= false
 irb(main):014:1> u.save
 irb(main):015:1> end

The next option allows you the option to change your username. This is generally not
recommended if you use another system such as Lightweight Directory Access Protocol
(LDAP) for account management:

username_changing_enabled: false

The next set of options determines the style to be used for GitLab; I suggest you try them all
(1-10):

 # default_theme: 1 # default: 1

Configuring GitLab from the Terminal Chapter 4

[116]

A nice feature that can automate your development workflow very efficiently is the
automatic closing of issues by issuing a commit to the default project branch. You can use
the following pattern to make the automation work. If it matches, it will be closed. The
pattern is quite complicated, so we will use the code provided:

issue_closing_pattern:
'\b((?:[Cc]los(?:e[sd]?|ing)|\b[Ff]ix(?:e[sd]|ing)?|\b[Rr]esolv(?:e[sd]?|in
g)|\b[Ii]mplement(?:s|ed|ing)?)(:?) +(?:(?:issues? +)?%{issue_ref}(?:(?:,
*| +and +)?)|([A-Z][A-Z0-9_]+-\d+))+)'

We could, for example, use the following commit message:

 Fix #122 and Closes groupx/bestproject#1000.
 Also important for #10 and fixes #11, #229 and #188
 and https://gitlab.example.com/group/mything/issues/9999.

In the preceding example, #122, #1000, #11, #229, #188, and #9999 will be automatically
closed. Only #10 will not be touched, because it does not match the pattern.

In GitLab, in each project you have some default capabilities, such as the possibility to
create issues or a wiki in the project space. There is an option to disable or enable them by
default:

default_projects_features:
 issues: true
 merge_requests: true
 wiki: true
 snippets: true
 builds: true
 container_registry: true

The CI/CD component of GitLab relies heavily on webhooks as its primary eventing
mechanism over network boundaries. On slow networks, you may want to increase the
timeout value of them to make them try harder:

webhook_timeout: 10

You can download the contents of a project, which are combined in a ZIP file. This creation
of a ZIP file needs some temporary disk space, which you can define here, the repository
downloads directory (relative path to the Rails directory):

 repository_downloads_path: shared/cache/archive/

Configuring GitLab from the Terminal Chapter 4

[117]

GitLab can also utilize an email client, which can get mail from an IMAP server, and parse
the mail contents for issues and merge request IDs. If you set this up correctly, you can
allow users to reply to notification emails, and the result will be added to the issue or the
merge request. The first part is where you enable or disable the function:

 incoming_email:
 enabled: false

The second part is where you define the incoming email address that is used and what part
of it is variable (every merge-request or issue number is a variable):

 address: "gitlab-incoming+%{key}@gmail.com"

The other settings mainly concern the IMAP server that is used along with the credentials
and connection settings:

 user: "gitlab-incoming@gmail.com"
 password: "[REDACTED]"
 host: "imap.gmail.com"
 port: 993
 ssl: true
 start_tls: false
 mailbox: "inbox"
 idle_timeout: 60

These settings together enable incoming email for your GitLab instance.

This concludes the section in the configuration file that covers some general settings. The
next section is about storing different kinds of files.

Storing big files
The GitLab CI/CD components can build your software, and that results in build artifacts.
They are sent back from the GitLab runners to the GitLab server. You can download them
through the web UI. These artifacts are, by default, stored on the GitLab server in
shared/artifacts. As the files can become quite large and numerous, it is also possible
to store these artifacts somewhere else, where the GitLab server can fetch them when
needed or redirect the request. You can set up object storage with Amazon S3, for example,
to be used as a big bucket to store files.

Configuring GitLab from the Terminal Chapter 4

[118]

By default GitLab it stores artifacts in the local shared path shared/artifact on the
server where GitLab is installed:

artifacts:
 enabled: true
 path: shared/artifacts

When comparing operations during merge requests, the diffs files are normally saved in
the database when enabled. But when set to true, GitLab will save them in a shared path:

 external_diffs:
 enabled: true
 storage_path: shared/external-diffs

In the same manner as the build artifacts and diffs, GitLab can store Git Large File
Storage (LFS) objects in a different place, out of the project repository. A reference to this
place is then inserted as a substitute in the project repository. This is a Git client extension,
for which the server side necessities have been implemented in GitLab. (More info about
Git LFS can be found at https://git-lfs.github.com/.) It can be enabled and given a
path:

 lfs:
 enabled: true
 storage_path: shared/lfs-objects

Another possible use for object storage is to store uploads, such as attachments and
avatars. We can enable this in GitLab to save space and use storage more efficiently:

uploads:
 base_dir: uploads/-/system

There are more options for storage than only local. You can also store things as an object
somewhere else.

Using object storage
A more efficient way of storing artifacts is by utilizing object storage. It can currently be
used for artifacts, lfs, uploads, and external_diffs for merge requests. The trick is
to add an object_store: part, which can have several options:

object_store:
 enabled: true
 remote_directory: artifacts

https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/

Configuring GitLab from the Terminal Chapter 4

[119]

A direct upload avoids saving the file in transit and directly uploads to AWS another
chosen object storage provider:

direct_upload: true

The next setting after remote_directory can limit the uploading of artifacts somewhat if
they are first saved in GitLab:

background_upload: false

If you set proxy_download to false, you will get redirected to object storage when
downloading, instead of being sent through a proxy connection:

proxy_download: false

There are some other specific settings regarding the connection to object storage. It has to
do with the provider type and specific attributes of this provider. The credentials and the
region are settings that have to be defined for most providers. The AWS signature version
is for creating signed URLs, and you have the option of v2 or v4. The endpoint is fixed for
AWS, but it can differ according to the provider. The path style refers to the resolving of the
files. If it is set to true, it will be like host/bucket_name/object, but if it is set to false,
it will be like bucket_name.host/object.

All settings under the connection section will look as follows:

connection:
 provider: AWS
 aws_access_key_id: AWS_ACCESS_KEY_ID
 aws_secret_access_key: AWS_SECRET_ACCESS_KEY
 region: us-east-1
 aws_signature_version: 4
 endpoint: 'https://s3.amazonaws.com'
 path_style: true

So far, we have seen the different storage options for big files that can be part of CI jobs or
repositories.

As you can see, there are many options to store different kinds of files. You can also publish
certain files as web content using pages, and that is the subject of the next section.

Configuring GitLab from the Terminal Chapter 4

[120]

GitLab pages
GitLab pages is an extension of CI/CD where web content can be automatically built and
deployed to a web server. You can publish static websites directly from a repository. There
are several options to consider. To use the feature, but also if access control should be
enabled and the path where the pages are stored.

The extension uses the GitLab pages daemon, which is written in Go and serves up content
from the shared location. If you run it on the same server, you ideally run it on page 80 or
443, in case you have to add an IP to the GitLab server. It is possible to run it on a separate
server, but you need to export the path from the GitLab server over the network to the host,
which will run the GitLab pages daemon.

More information can be found at https://gitlab.com/gitlab-org/
gitlab-pages.

The first settings concerning GitLab pages are to enable or disable it completely, to enable
or disable access_control, and you can set a path to the shared pages:

pages:
 enabled: false
 access_control: false
 path: shared/pages

The following settings determine the properties of the server for GitLab pages:

 host: example.com
 port: 80
 https: false
 artifacts_server: true
 external_http: ["1.1.1.1:80", "[2001::1]:80"]
 external_https: ["1.1.1.1:443", "[2001::1]:443"]

The last setting defines the location of a socket for admin access:

admin:
 address: unix:/home/git/gitlab/tmp/sockets/private/pages-admin.socket #
TCP connections are supported too (e.g. tcp://host:port)

The settings for GitLab pages are complete.

https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages
https://gitlab.com/gitlab-org/gitlab-pages

Configuring GitLab from the Terminal Chapter 4

[121]

Mattermost
There are many integrations for GitLab available, but one very interesting one is
Mattermost, a Slack-like chat collaboration tool. It was acquired by GitLab in 2017, and is
now even integrated in the omnibus GitLab install. You can enable the ChatOps operation
with this tool. In the settings, you can enable the specific button in GitLab:

 mattermost:
 enabled: false
 host: 'https://mattermost.example.com'

By enabling this, you can use the Add button in GitLab in the service settings.

Gravatar
The following code block defines settings for using avatars, which is by default
gravatar.com. Gravatar is a Globally Recognized Avatar. An avatar is an image
following you from site to site, and the Gravatar service originated from WordPress, where
it was used for blogs. You can set the HTTP and HTTPS URL here:

gravatar:
plain_url: “http://www.gravatar.com/avatar/%{hash}?s=%{size}&d=identicon”
ssl_url: “https://secure.gravatar.com/avatar/%{hash}?s=%{size}&d=identicon”

Another example would be to set it to point to an Office 365 URL (you must be
authenticated to Office 365 to use it):

gravatar: plain_url:
“http://outlook.office365.com/owa/service.svc/s/GetPersonaPhoto?email=%{ema
il}&size=HR120x120”
ssl_url:
“http://outlook.office365.com/owa/service.svc/s/GetPersonaPhoto?email=%{ema
il}&size=HR120x120”

Another service that offers these services is Libreavatar. You can find
more info about this at https://wiki.libravatar.org/api/.

https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/
https://wiki.libravatar.org/api/

Configuring GitLab from the Terminal Chapter 4

[122]

Sidekiq
The Sidekiq component of GitLab takes care of background jobs, and you can find more
information about it in Chapter 1, Introducing the GitLab Architecture. Most of the
configuration is done in the configuration file of Sidekiq itself, but there are some options in
the gitlab.yml file you can define.

For instance, you can only define the log_format here and the cron jobs that will be run in
Sidekiq:

Sidekiq
 sidekiq:
 log_format: default # (json is also supported)

In the Sidekiq background processing, there is also a job scheduler integrated, which, by
default, runs a couple of jobs. The format of the schedule is just like cron on Unix systems.
The most import jobs are listed as follows:

stuck_ci_jobs_worker: Set stuck jobs to state failed.
pipeline_schedule_worker: Execute scheduled triggers.
expire_build_artifacts_worker: Remove expired build artifacts.
repository_check_worker: Periodically run git fsck on all repositories.
ci_archive_traces_cron_worker: Archive live traces that have not been
archived yet.
admin_email_worker: Send admin emails.
repository_archive_cache_worker: Remove outdated repository archives.
pages_domain_verification_cron_worker: Verify custom GitLab pages
domains.
schedule_migrate_external_diffs_worker: Periodically migrate diffs
from the database to external storage.

For GitLab Enterprise Edition (EE), several extra jobs are available, mainly ones that
handle Geo synchronization and LDAP sync.

GitLab Registry
GitLab can function as a fully fledged container registry for Docker containers. You can set
options for it in the following section.

Configuring GitLab from the Terminal Chapter 4

[123]

The first option is basically the on or off switch:

enabled: true

The next option is the hostname, which it will set:

host: registry.example.com

You can also define the network port it will listen on:

port: 5005

There is an internal address you can define that GitLab itself will connect to:

api_url: http://localhost:5000/

The GitLab registry uses a keypair, the rootcertbundle, here is the private key location:

key: config/registry.key

Set the path that is used for storage:

path: shared/registry

Set the name of the issuer of the certificate:

issuer: gitlab-issuer

Further options can be found at https://docs.gitlab.com/ee/
administration/container_registry.html.

GitLab CI settings
GitLab CI used to be a separate software component but is now firmly integrated into the
GitLab backend.

There are three options to configure in the gitlab.yml:

all_broken_builds: Only send an email if a build broke.
add_pusher: Also, add the user pushing the last version of the repository to the
recipient list.

https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html
https://docs.gitlab.com/ee/administration/container_registry.html

Configuring GitLab from the Terminal Chapter 4

[124]

builds_path: The location where the build traces are stored.

gitlab_ci:
 all_broken_builds: true
 add_pusher: true
 builds_path: builds/

Further configuration of GitLab CI is done from the web interface as you have seen in the
previous chapter.

Auth settings
There are several authentication providers available for GitLab. The main on-premise one is
the LDAP interface (to Active Directory, OpenLDAP).

The first part is the enabling of the feature:

ldap:
 enabled: false

The next part is the declaration of servers:

 servers:
 main:
 label: 'LDAP'
 host: '_your_ldap_server'
 port: 389
 uid: 'sAMAccountName'
 bind_dn: '_the_full_dn_of_the_user_you_will_bind_with'
 password: '_the_password_of_the_bind_user'

As you can see, we define a label and set up a host and port. We also give the uid
attribute to use and a password and bind_dn (object or user used to attach to LDAP).

You can set options for SSL to enhance security:

 encryption: 'start_tls'
 verify_certificates: true
 ssl_version: 'TLSv1_1'

Configuring GitLab from the Terminal Chapter 4

[125]

Next up are some settings that belong to how login actions are handled and how timeouts
are handled:

 timeout: 10
 active_directory: true
 allow_username_or_email_login: false
 block_auto_created_users: false

GitLab needs to know where it can find users from in your LDAP tree and how to
distinguish them from other objects or persons. You can set the LDAP base and a filter:

 base: 'ou=People,dc=gitlab,dc=example' or 'DC=mydomain,DC=com'
 user_filter:
'(&(objectclass=user)(|(samaccountname=momo)(samaccountname=toto)))'

In the next part, you can determine which LDAP attributes you want to use in GitLab. It
maps LDAP objects to GitLab objects:

 username: ['uid', 'userid', 'sAMAccountName']
 email: ['mail', 'email', 'userPrincipalName']
 name: 'cn'
 first_name: 'givenName'
 last_name: 'sn'
 lowercase_usernames: false

If you have an enterprise license, you are entitled to define more than one LDAP server,
which is often the case in a corporate environment. You can add a main label to a block of
settings we filled in the preceding code block and create a new block with a new label:

 label:
 host:

Besides LDAP, you can authenticate users with OAuth-enabled cloud providers. The first
section of the settings deal with some general options, such as enabling the feature, how to
handle information from those providers, and other behavioral aspects of the mechanism.
The comments in the configuration file are very detailed about what the possibilities are.

The second part of the section allows you to define an OmniAuth provider. There are
several examples mentioned, such as GitHub and Facebook and Auth0 (https://auth0.
com/) (an identity management platform). Again, the configuration file offers a lot of
explanation regarding how to configure this.

At the end of this configuration file section, there are two settings that are, in my opinion,
not Auth settings, but they are important.

https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/

Configuring GitLab from the Terminal Chapter 4

[126]

You can define a shared file storage path. GitLab uses shared file storage for some
operations:

shared:
 /mnt/gitlab

Here, you define settings for the Gitaly service. If you run it from the source, you should
mention where you ran it from:

gitaly:
 client_path: /home/git/gitaly/bin
 token:

Advanced settings
I am not sure why there is an advanced section such as this in gitlab.yml, but the first
options deal with repository settings. The main thing here is that you specify the path to the
repositories shown as follows:

storages:
 default:
 path: /home/git/repositories/
 gitaly_address: unix:/home/git/gitlab/tmp/sockets/private/gitaly.socket #
 gitaly_token: 'special token'

There is always a default entry, and you can specify a path and a gitaly_address here
(also in the form of tcp://). You can override the global gitaly_token here.

GitLab has a backup or restore facility. It is in the form of a rake task. For example, you can
invoke a backup task like this:

sudo -u git -H bundle exec rake gitlab:backup:create

The former command has options you can set via the configuration file. Once again, you
can use the cloud to store files. GitLab imports cloud drivers for AWS, Google, OpenStack
Swift, Rackspace, and Aliyun as well. A local driver is also available. The following is an
example entry in gitlab.yml:

Backup settings
backup:
 path: "tmp/backups"

Configuring GitLab from the Terminal Chapter 4

[127]

The GitLab shell is the primary component to provide Git-SSH connections, and when run
from the source, you have to specify the path where it is installed. There is also a path set
for hooks, which can execute when an event like a git push is fired (you can create your
own hooks):

gitlab_shell:
 path: /home/git/gitlab-shell/
 hooks_path: /home/git/gitlab-shell/hooks/

You also have to define the file which contains a secret. It is to be used when GitLab shell
connects to the rails backend to verify access of the user that tries to do Git-SSH operations:

File that contains the secret key for verifying access for gitlab-shell.
 # Default is '.gitlab_shell_secret' relative to Rails.root (i.e. root of
the GitLab app).
secret_file: /home/git/gitlab/.gitlab_shell_secret

In the following code block, you see the definition of the key that is used by GitLab
Workhorse to get access to the rails application.

workhorse:
secret_file: /home/git/gitlab/.gitlab_workhorse_secret

It is defined in the file .gitlab_workhorse_secret as
follows TJEf6HQcgkBjcLGVdZ4h6Y2PB89X1RGs/RsJ7FIfg6s=.

You have the option of changing to another Git version:

Git settings
git:
 bin_path: /usr/bin/git

The webpack program is used to compile and serve frontend assets such as Cascading
Style Sheets (CSS), only to be used in development:

Webpack settings
webpack:
 dev_server:
 enabled: true
 host: localhost
 port: 3001

Configuring GitLab from the Terminal Chapter 4

[128]

The Prometheus endpoint that is built in also gathers data about Unicorn performance. It
will sample the Unicorn Unix socket for that. Here, you can define the sampling rate. You
can also define a whitelist for IPs allow to connect to the metrics endpoint:

Built in monitoring settings
monitoring:
 unicorn_sampler_interval: 10
 ip_whitelist:
 - 127.0.0.0/8

Another built-in metrics provider, a sidekiq Prometheus exporter, is controlled from here:

sidekiq_exporter:
 enabled: true
 address: localhost
 port: 3808

As you can see, the topics that are handled in this section are quite different, and I am not
sure whether they should reside under advanced settings. There is also a final section in the
gitlab.yml file called extra customization. The most important part here
is rack_attack.

Rack Attack
An import part of internet security nowadays are built-in throttling mechanisms to counter
denial-of-service attacks. GitLab uses the Rack Attack Gem that can keep an eye on the
number of requests coming from individual IPs. You can disable it here and set a whitelist
and some thresholds:

rack_attack:
 git_basic_auth:
 enabled: true
 ip_whitelist: ["127.0.0.1"]

You can limit the number of Git HTTP authentication attempts:

maxretry: 10

After 60 seconds, the auth attempt counter will be reset:

findtime: 60

Configuring GitLab from the Terminal Chapter 4

[129]

You can also ban an IP for one hour (3,600 seconds); for example, after too many auth
attempts:

bantime: 3600

We have reached the end of the gitlab.yml file. After restarting GitLab, the changes will
become active. There are other ways of running GitLab. In the next section, we will take a
look at configuring an instance in a Docker container.

Reconfiguring GitLab Docker containers
The official containers from GitLab use the omnibus-gitlab package, so all the
configuration is managed through the unique configuration
file, /etc/gitlab/gitlab.rb.

Once the container is started, you can connect to it by starting a Bash session:

docker exec -it gitlab /bin/bash

You can now edit /etc/gitlab/gitlab.rb inside the Docker container. Then you can
run gitlab-ctl reconfigure after that to apply the changes.

A second way to configure the container is to start it up with a environment
variable, GITLAB_OMNIBUS_CONFIG. This variable can contain the contents of a gitlab.rb
file. These settings will not be persisted to the real file.

You could use the following code:

sudo docker run \
 --hostname gitlab.joustie.nl \
 --env GITLAB_OMNIBUS_CONFIG="external_url 'http://gitlab.joustie.nl/';
gitlab_rails['lfs_enabled'] = true;" \
 --publish 443:444 --publish 80:81 --publish 22:2222 \
 --volume /srv/gitlab/config:/etc/gitlab \
 --volume /srv/gitlab/logs:/var/log/gitlab \
 --volume /srv/gitlab/data:/var/opt/gitlab \
 gitlab/gitlab-ce:latest

The container start-up process will always run gitlab-ctl reconfigure. This means the
omnibus template settings you specify during container startup need to be explicitly set
every time you spin up the container; otherwise, your container will reconfigure and you
will lose the settings.

Configuring GitLab from the Terminal Chapter 4

[130]

Changing GitLab in a Kubernetes
environment
Since GitLab for Kubernetes is configured by Helm charts, you need to configure all
settings through that.

The options can be found here: https://gitlab.com/charts/gitlab/blob/master/doc/
installation/command-line-options.md.

For each set of options, some are required, and those that are not required have a default
value.

In the next section, we will pick some of the options to change in a Kubernetes
environment.

Basic configuration
There are two required settings here: global.hosts.domain and
global.hosts.externalIP. These should point to the host and IP where GitLab is to be
served from. Another interesting set of these are as follows:

global.psql.host

global.psql.password.secret

global.psql.password.key

These contain information that point to an external Postgres instance.

Other options can be found in the command-line options URL at https://gitlab.com/
charts/gitlab/blob/master/doc/installation/command-line-options.md.

Configuring TLS
These options control the TLS configuration that is activated for GitLab. There are no
required options, but if you don't want to use Let's Encrypt, set
global.ingress.configureCertmanager to false.

https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md

Configuring GitLab from the Terminal Chapter 4

[131]

Configuring outgoing emails
For outgoing email, there are several options such as the host of the incoming mail
server—for example:

global.smtp.address (e.g. smtp.joustie.nl) with
global.smtp.authentication="" (disable smtp authentication)

To set this configuration setting and enable it, you use the following command line:

helm upgrade gitlab gitlab/gitlab \
 --timeout 600 \
 --set global.hosts.domain=kicks-ass.net \
 --set global.hosts.externalIP=82.161.132.207 \
 --set certmanager-issuer.email=joustie@gmail.com \
 --set global.smtp.enabled=true \
 --set global.smtp.address=smtp.joustie.nl \
 --set global.smtp.authentication=""

If your SMTP server requires authentication, you need to add the credentials as an –set
option and deploy the password also as a secret with the following:

kubectl create secret generic smtp-password --from-
literal=password=yourpasswordhere

After you have issued the helm upgrade command, the unicorn and sidekiq
components will automatically restart in the Kubernetes cluster.

Other settings
Many other settings are available, and you can view them at https://gitlab.com/charts/
gitlab/blob/master/doc/installation/command-line-options.md.

Here are some examples:

Incoming Email configuration: GitLab can also handle incoming mail for the
service desk feature.
GitLab shell: You can provide settings for the GitLab shell.
RBAC settings: You can describe Kubernetes Role Based Access Control
(RBAC).

https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md
https://gitlab.com/charts/gitlab/blob/master/doc/installation/command-line-options.md

Configuring GitLab from the Terminal Chapter 4

[132]

Advanced nginx ingress configuration: Change the default ingress nginx
settings for the cluster.
Advanced in-cluster Redis configuration: Change the settings for the Redis
cluster.
Advanced registry configuration: Change the settings for the Docker registry
that is running as a microservice.
Advanced MinIO configuration: Change the settings for the MinIO object
storage microservice.
Advanced GitLab configuration: Change the advanced settings in GitLab.

Summary
In this chapter, we discussed configuring an existing GitLab application instance. As we
have seen in earlier chapters, the options are different, depending on the installation path
you have chosen. An omnibus GitLab installation is relatively easy to configure. Just
change the setting in /etc/gitlab/gitlab.rb and run gitlab-ctl reconfigure.
Changing the settings in an installation from source requires a bit more attention, because
the dependencies between the GitLab components aren't managed as they are with
omnibus GitLab. Configuring the GitLab instance running inside the Docker containers is
the same as the way you manage the omnibus GitLab installations.

In the next chapter, we will be exploring settings that should be altered in your GitHub and
in GitLab to understand the procedure of importing and running the project.

Questions
What services are enabled when the postgres_role is chosen in gitlab.rb?1.
Where is gitlab.yml usually found?2.
What protocol is used for the incoming mail feature?3.
What does LFS stand for?4.
Which Open Source chat tool is tightly integrated with GitLab?5.
What license is needed to support LDAP groups?6.
What mechanism does GitLab provide to throttle web requests?7.
What tool do you need, besides Helm, to configure Kubernetes?8.

Configuring GitLab from the Terminal Chapter 4

[133]

Further reading
Getting Started with Kubernetes - Third Edition by Jesse White and Jonathan
Baier: https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition

Develop and Operate Microservices on Kubernetes [Video] by Martin Helmich: https:/
/www.packtpub.com/virtualization-and-cloud/develop-and-operate-
microservices-kubernetes-video

Docker Cookbook - Second Edition by Jeeva S. Chelladhurai, Ken Cochrane, Neependra
Khare: https://www.packtpub.com/virtualization-and-cloud/docker-
cookbook-second-edition

https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/develop-and-operate-microservices-kubernetes-video
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition

2
Section 2: Migrating Data from

Different Locations
Depending on which platform the reader currently uses, the path to a successful migration
to GitLab is explained and demonstrated.

This section comprises the following chapters:

Chapter 5, Importing Your Project from GitHub to GitLab
Chapter 6, Migrating From CVS
Chapter 7, Switching from SVN
Chapter 8, Moving Repositories from TFS

5
Importing Your Project from

GitHub to GitLab
In the first section, we explained the GitLab architecture and how to install and configure
GitLab in several ways. In this part of the book, we will look at several ways of migrating
source projects from third parties to GitLab. We will start with GitHub, which resembles
GitLab a lot and which was the inspiration to develop it. After years of development, the
two products still share the same basic functionality, but have diverged in additional
features. There are several ways you can import projects from GitHub.

In this chapter, the following points will be covered:

Using the GitHub integration feature in GitLab (also known as the GitHub
importer)
Using a GitHub token—create this in GitHub for third party application
integration
Using a GitLab rake task—you need access to a GitLab instance that can run rake
tasks, and when you possess administrator rights

For each method, we will present what you have to configure and prepare in GitHub and
GitLab. Finally, we will run the import for each method.

Importing Your Project from GitHub to GitLab Chapter 5

[136]

Technical requirements
In order to manage omnibus installs, you need to use a central configuration file called
gitlab.rb. You need to create it or copy an example of one. Fortunately, a template is
available, which you can find
at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config
-template/gitlab.rb.template. It isn't updated after upgrades. Later on in this chapter, I
will quote and discuss parts of this file.

To follow along with the instructions in this chapter, please download the GitHub
repository, along with the examples available on the GitHub repository, at https://
github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05.

You will also need a GitHub account, as well as a GitLab account in the cloud or on
premise.

In regards to user matching, you want to make sure that the GitHub users associated with
the repository have the following:

A GitLab account that uses OAuth-based login using the GitHub icon
A GitLab account with an email address that is identical to their public email
address in GitHub

Using the GitHub integration feature
To export things from GitHub, the proper authorizations must be set. This can be done
using GitHub integration with OAuth registration, where GitLab authenticates with
GitHub to access a list of projects for the user.

The best result of mapping authors and assignees from GitHub to GitLab is achieved when
using the GitHub integration features that are available in GitLab instead of using a single
personal access token from GitHub.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter05

Importing Your Project from GitHub to GitLab Chapter 5

[137]

The integration covers all the import items we just mentioned and tries to keep all the
references intact. For instance, the importer will try to find the GitHub authors and
assignees of issues and pull requests. This means that GitLab integration has to be enabled
in your GitLab instance.

Preparing GitHub for export
To register GitLab as an application that can connect to GitHub, you have to log in to your
GitHub account. To do this, go to https://github.com/settings/developers and register
GitLab as an OAuth application:

Fill in the form using the following data:

Application name (the name of your application)
Homepage URL (the full URL to your application)
Application description (general description)

https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers
https://github.com/settings/developers

Importing Your Project from GitHub to GitLab Chapter 5

[138]

Authorization callback URL (the most important setting, the URL to send to after
authentication):

After the registration has succeeded, an overview is presented with two very important
pieces of information: the client ID and client secret are shown, and also how many users
have used the OAuth link to connect GitHub repositories. The client ID and client secret are
needed later to configure GitLab for integration.

The following screen appears after a successful registration:

Importing Your Project from GitHub to GitLab Chapter 5

[139]

Importing Your Project from GitHub to GitLab Chapter 5

[140]

You now have GitHub configured and can move on to the Preparing GitLab for import
section.

Preparing GitLab for import
To finish the setup for the GitHub integration, we have to set up our GitLab instance so that
we can connect as a registered OAuth application to GitHub. We do this by adding
an omniauth_provider to the GitLab configuration. Remember the client ID and the client
secret? We will need these here.

For GitLab omnibus installations, we need to create a section in /etc/gitlab/gitlab.rb
like the following one. app_id is the client ID, while app_secret is the client secret. The
name that is provided isn't important. After the file has been saved, you have to
use gitlab-ctl reconfigure:

gitlab_rails['omniauth_providers'] = [
 {
 "name" => "github",
 "app_id" => "dd1c6d6aed110b2cce8e",
 "app_secret" => "f6ddd6059c694ecfc1a96f962fa20b6c3f7c8c4a",
 "args" => { "scope" => "user:email" }
 }
]

For GitHub Enterprise, you can specify the URL of your GitHub instance as well:

"url" => "https://github.example.com/",

For GitLab installations from source, we edit the config.yml file, as follows. and restart
GitLab after saving it:

- { name: 'github',
 app_id: 'dd1c6d6aed110b2cce8e',
 app_secret: 'f6ddd6059c694ecfc1a96f962fa20b6c3f7c8c4a',
 url: "https://github.com/",
 verify_ssl: true,
 args: { scope: 'user:email' } }

Importing Your Project from GitHub to GitLab Chapter 5

[141]

See https://github.com/gitlabhq/omnibus-gitlab/blob/master/
files/gitlab-config-template/gitlab.rb.template for more
information on settings you can set in the gitlab.rb file. Also see
Chapter 2, Installing GitLab about this subject.

Running the import
Follow these steps to learn how to run the import:

In GitLab, choose to create a new project and use the Import project tab to find1.
the GitHub icon:

After clicking on the GitHub icon, you will find a page where you can click List2.
your GitHub repositories:

https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template

Importing Your Project from GitHub to GitLab Chapter 5

[142]

When GitHub integration is enabled, the next step will be to authorize GitLab to3.
access your projects:

Importing Your Project from GitHub to GitLab Chapter 5

[143]

If authorization succeeds, a list of projects that can be migrated is shown. Select4.
the projects to be migrated, and click Import:

Importing Your Project from GitHub to GitLab Chapter 5

[144]

Make sure that you don't have projects with the same name already in GitLab in your
namespace, otherwise you will receive a 422 error, as shown in the following screenshot:

When the import is finished, you will receive a message:

The project has been successfully imported!

Using a GitHub token
When using a GitHub token to import, there's nothing special to configure in GitLab – you
can enter it immediately, as you will see later.

Preparing GitHub for export
A personal token can be used as delegated authorization from your GitHub account. Let's
get started:

You create one via https://github.com/settings/tokens:1.

https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens

Importing Your Project from GitHub to GitLab Chapter 5

[145]

Make sure you set a meaningful token description and choose the repo scope2.
only. We want the GitLab importer to access these objects:

Importing Your Project from GitHub to GitLab Chapter 5

[146]

Once the token has been created, make sure to record the token somewhere3.
because it won't be shown again, and losing it means that you have to recreate it:

You now have a GitHub token and can choose to use it directly in the GitLab web interface.

Running the import
Let's get started and learn how to prepare GitLab for import:

In GitLab, create a new project and use the import tab to find the GitHub icon, as1.
shown in the following screenshot:

Importing Your Project from GitHub to GitLab Chapter 5

[147]

If GitHub integration is disabled, the next screen won't have an option for you to2.
list your GitHub repositories. To choose a project to migrate, you have to enter
the personal token you created on https://github.com/:

Again, if authorization succeeds, a list of projects that can be migrated is shown.3.
Select the projects to be migrated and click Import:

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Importing Your Project from GitHub to GitLab Chapter 5

[148]

When the import is finished, you will receive a message:4.

The project has successfully been imported using the token.

Using a GitLab rake task
In order to retrieve and import GitHub repositories, you will need a GitHub personal
access token, as demonstrated earlier.

Preparing GitLab for import
For importing projects using a rake task, there is only one option to configure in GitLab
beforehand: the number of Sidekiq resources. You will notice that for big projects, it can
take quite some time to import all the data. To speed up this process, assign more Sidekiq
workers to the following queues:

github_importer

github_importer_advance_stage

For GitLab omnibus installations, these queues are part of the default Sidekiq process.
Giving more threads to Sidekiq will mean that there will be more workers:

sidekiq['concurrency'] = 25

See https://github.com/gitlabhq/omnibus-gitlab/blob/master/
files/gitlab-config-template/gitlab.rb.template for more
information on settings you can set in the gitlab.rb file. Also, see
Chapter 2, Installing GitLab about this subject.

Running the import
The GitLab rake task can import a single project or multiple projects at once. It is invoked
from the command line, so you need administrator access to the machine where the GitLab
application is running.

https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/gitlabhq/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template

Importing Your Project from GitHub to GitLab Chapter 5

[149]

When specifying a GitHub repository as the fourth argument to the rake task, you can
directly import it.

To import a specific GitHub project (named joustie/github_repo here), do the
following:

Omnibus installations:

sudo gitlab-rake "import:github[<personal_access_token>,<gitlab
user>,<namespace/project>,<source_namespace/github_repo>]"

Installations from source:

bundle exec rake "import:github[<personal_access_token>,<gitlab
user>,<namespace/project>,<source_namespace/github_repo>]"
RAILS_ENV=production

To import a project from the list of your available GitHub projects, do the following:

Omnibus installations:

sudo gitlab-rake "import:github[<personal_access_token>,<gitlab
user>,<namespace/project>]"

Installations from source:

bundle exec rake "import:github[<personal_access_token>,<gitlab
user>,<namespace/project>]" RAILS_ENV=production

It is also possible to specify subgroups such as <groupname/groupname/project>.

For my example project, you will see the following results:

Importing Your Project from GitHub to GitLab Chapter 5

[150]

The GitHub importer obtained a list of projects with your GitHub personal access token.
When you want to specify one particular project, use the ID:

The importer will ask for confirmation after that:

The rake tasks will run synchronously and perform the import. After the import operation,
a summary of the timings is given:

When you log in to your GitLab instance, you will find the imported project.

Importing Your Project from GitHub to GitLab Chapter 5

[151]

Summary
We started this chapter by explaining what items can be migrated from GitHub to GitLab,
and what the possibilities are. There are three options regarding migrating your data, and
which ones you can use depend on how your GitLab instance is configured. The
recommended way is to use the GitHub importer. This mechanism presents the most user-
friendly and complete migration path.

GitHub and GitLab are very comparable, but in the next chapter, we will take a look at CVS
and how it compares to Git as a versioning tool, and how to migrate it.

Questions
What is the equivalent of a pull request in GitLab?1.
Which ways exist to import GitHub projects into GitLab?2.
What is needed to display the authors correctly?3.
Which authentication mechanism is used to connect to GitHub?4.
What is the secret called that's needed to connect to GitHub?5.
What scope do you need for a token to import as much as possible from GitHub?6.
What is the name of the two queues that process the import?7.
Where can you find the import button for GitHub in GitLab?8.
What is the name of the rake task to import from GitHub?9.
Is it possible to import one particular project only?10.

Further reading
GitHub Essentials – Second Edition, by Achilleas
Pipinellis: https://www.packtpub.com/web-development/github-essentials-se
cond-edition

https://www.packtpub.com/web-development/github-essentials-second-edition
https://www.packtpub.com/web-development/github-essentials-second-edition

6
Migrating from CVS

For a long time, the Concurrent Versions System (CVS) was the standard in versioning
software. It is, in essence, a client-server revision control system for software. CVS was
written in 1986 by Dick Grune of the University of Amsterdam as a collection of shell
scripts called RCS. RCS can only do version management on separate files, so this was a big
step forward. In 1989, Brian Berliner made an implementation in C, which has been
developed further since; it is a piece of open source software that's distributed under the
GNU General Public License (GPL).

In the 2000s, there was a shift to subversion and to decentralized version control software
such as Git.

In this chapter, we will compare both versioning systems. After that, we will prepare and
run a migration from CVS to Git.

The following topics will be covered in this chapter:

CVS versus Git
Preparation for migrating from CVS to Git
Running the conversion
Cleaning up after migration

Migrating from CVS Chapter 6

[153]

Technical requirements
To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with the examples: https://github.com/PacktPublishing/Mastering-
GitLab-12/tree/master/Chapter06.

The other requirements so that you can follow along with this chapter are as follows:

CVS binary: http://www.nongnu.org/cvs/

npm/Node.js binaries to create a JavaScript example: https://nodejs.org

cvs-fast-export binary: http://www.catb.org/~esr/cvs-fast-export

cvs2git binary: https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html

CVS versus Git
Centralization versus decentralization – this is the biggest difference between CVS, which is
centralized, and Git's distributed design. With CVS, all developers pull from a centralized
repository, thereby creating a single point of failure. Git uses a decentralized model, where
every developer has a full-blown code repository locally available. By using push and pull
requests, the decentralized repositories share code.

The following diagram depicts using push and pull on shared and distributed repositories:

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter06
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html

Migrating from CVS Chapter 6

[154]

With Git, there are different options in regards to the network protocol and system settings.
In particular, you have the decision to communicate with remote services over SSH or
HTTP. By utilizing SSH, you can generate your SSH keys and set them up for use with Git.
After this, you can use Git to clone/push or pull from SSH locations. You can also use Git to
use HTTP as a protocol, which generally requires basic HTTP authentication, after which
the Git operations can occur. Some Git clients have built-in caching mechanisms to help
you avoid typing in your HTTP password every time.

Publishing your work in this context is done by committing your changes to the central
repository. CVS uses a specific protocol, called pserver, which is unencrypted and in plain
text by default. Another option is to use the remote shell (rsh) on the remote server. To
enhance security, you can also tunnel the pserver protocol through SSH or use SSH as the
rsh executable.

The authorization model that's used in CVS systems is very simple. If you want to write
something, you need to commit access to a repository. There is no facility to accept patches
from people who are not authorized. The merge requests with all the facilities that modern
Git servers provide have to be executed by the committer themselves. So, from a
development engineering perspective, Git offers more complex workflows and is tailored
for a world where many people contribute to a software project.

Besides the infrastructural difference, there are also several differences between your local
CVS/Git client.

Filesets versus changesets
CVS and Git have a different way of representing changes on a meta level. CVS uses
filesets, so changes are recorded per file. Git, on the other hand, uses changesets, so changes
are recorded against the whole repository. The advantage of this is that you can revert a
change easily; however, this means that it is almost impossible to do a partial checkout (if
you want to do this).

Migrating from CVS Chapter 6

[155]

Git branching
When using Git, it is very easy and cheap to create new branches – they're just pointers (a
SHA-1 ID) to a specific commit. You create them on the fly, and that is how it should be,
especially in agile development and with many collaborating developers.

The following diagram illustrates how Git uses branching:

Notice the hash values shown in the preceding objects (98ce9, 22ca2, and f23ae) – these are
the SHA values that uniquely identify a commit.

Migrating from CVS Chapter 6

[156]

CVS also uses branches, but because it is file-based, a new branch gets you a copy of all the
files in a new directory, which is much less efficient. This situation is depicted in the
following diagram:

The way branches and file structures are handled is one of the most fundamental
differences between these two systems.

Creating repositories
When using CVS to create repositories, you have to set up a CVSROOT location where
versioning data is stored. Then, you have to import projects into that location and create a
working copy somewhere else. This is much easier and more logical with Git since you just
implement git init && git add . && git commit in an existing directory only once
a .git directory is created with repository meta information.

Migrating from CVS Chapter 6

[157]

Atomic operations
The basic idea of CVS is that it operates on files and not on snapshots. This means that
when changes are processed and the operation is interrupted, the repository as a whole is
inconsistent. This differs to Git, where changes succeed as a whole, or they fail without
the changes combined.

Object naming or referencing versions
In Git, every object has a unique ID, that is, a SHA-1 ID. This ID makes it easier to reference
in the future (you can also use a shortened version if you so desire). In CVS, every file has
its own version number. This number also reflects how many times it's been altered. In
CVS, to reference changes to the project as a whole, you need to use tags.

Keyword substitution
CVS supports the substitution of certain keywords in source code. For example, $Author$,
$CVSHeader$, and Id.Developers have used this feature frequently (some still do). To
use this mechanism, you would insert the keyword – let's call it a special variable – in your
text or source file. Then, you would commit this file to your repository. By doing this, CVS
will substitute this variable with the value in the CVS context during the commit. A lot of
people use the Id string in their C source code. You can turn off this behavior completely
in CVS by specifying -ko on the command line.

As an example, let's say I add a keyword to a source file, as follows:

{
 "name": "cvsproject",
 "version": "1.0.0",
 "description": "something",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "$Author$",
 "license": "ISC"
 }

Migrating from CVS Chapter 6

[158]

Then, I would commit this change:

$ cvs commit -m "Added author keyword"
 cvs commit: Examining .
 cvs commit: Examining images
 /Users/joostevertse/cvsroot/cvsproject/cvsproject/package.json,v <--
package.json
 new revision: 1.3; previous revision: 1.2

After the commit, the keyword has been substituted by my username:

"author": "$Author: joostevertse $",

Git has a very limited set of keywords, and this is because changes are per repository and
not per file. Also, Git avoids modifying files that didn't change when switching to another
branch or rewinding to another point in time.

Binary blobs
Git and CVS handle binary files differently. In CVS, it is harder to handle them since you
have to explicitly label them as binary. If you don't, you run the risk of corrupting the file
with unwanted LR/LF conversions or keyword substitutions. Git, on the other hand, can
automatically detect whether your file is of the binary kind. It uses the same mechanism as
GNU Diffutils.

Let's create a simple binary from source and add a reserved keyword. Then, we will
compile it with GCC and run it:

$ cat hello.c
 #include <stdio.h>
 int main()
 {
 // printf() displays the string inside quotation
 printf("Hello, World!$Author$");
 return 0;
 }

$ gcc hello.c -o hello

$./hello
 Hello, World!$Author$

Migrating from CVS Chapter 6

[159]

So, let's copy the binary to the CVS project that we used previously:

$ cp hello /Users/joostevertse/cvs/cvsproject/cvsproject/
$ cd $HOME/cvs/cvsproject/cvsproject

$ cvs add hello
 cvs add: scheduling file `hello' for addition
 cvs add: use `cvs commit' to add this file permanently

$ cvs commit -m "binary with keywords inside"
 cvs commit: Examining .
 cvs commit: Examining images
 /Users/joostevertse/cvsroot/cvsproject/cvsproject/hello,v <-- hello
 initial revision: 1.1

$./hello
 Segmentation fault: 11

What happened? Well, keyword substitution added the author name in the binary! It
corrupted it. If you run the cat command, you will find the following line in the file:

1ɉE???H??]??%?L??AS?%q?h?????Hello, World!$Author: joostevertse $P44{4

Fortunately, you can fix this with cvs admin:

 $ cvs admin -kb hello
 $ cvs update -A hello
 $ cvs commit -m "make it binary" hello
 $./hello
 Hello, World!$Author$

Amending commits
One frequently used feature of Git is the ability to amend to a commit. This is possible
because, in Git, there is a difference between creating and publishing a commit. This won't
inconvenience users compared to CVS, where it would. If you make a typo in your commit
message in Git, you can use git commit --amend to correct it. It's also technically
possible in CVS, but it would be hard to implement:

 $ echo "This is the last line FOR REAL" >> README.md
 $ git log
 commit 499beb6dd81ee62e90b05ee8e9aa3ccced7a4fd2 (HEAD -> new-readme)
 Author: Joost Evertse <joustie@gmail.com>
 Date: Thu Dec 6 21:18:32 2018 +0100

 A new line was added

Migrating from CVS Chapter 6

[160]

Let's pretend I forgot to add something to my README.md file (a text file in my repository).
The following code shows you how to add it to the last commit:

 $ echo "This is the last line FOR REAL" >> README.md
 $ git add README.md
 $ git commit -m "A new line was added FOR REAL" --amend
 $ git log
 commit 9c527dfe0ac2ce04b6cd1be6085bac00c7f31e6c (HEAD -> new-readme)
 Author: Joost Evertse <joustie@gmail.com>
 Date: Thu Dec 6 21:18:32 2018 +0100

 A new line was added FOR REAL

By doing this, you can add to a commit, but this is only reflected in your local Git copy. You
still have to push your changes to remote servers if you want others to see your changes.

A central repository
CVS as a centralized system has one place of origin. Git is a distributed versioning system,
which means that each developer has its own copy of the repository. They have a private
one and they can push changes to a public one or merge changes from other remotes. In
larger organizations, it is common to have a central place to aggregate projects. With Git,
there is no need to have a single central place where you store your changes. Each
developer can have their own repository (or better repositories, that is, a private one in
which they undertake development, and a public bare one where they publish parts that
are ready), and they can pull/fetch from other repositories in a symmetric fashion.

In the Git world, there is no single source of truth like there is in the CVS server. There can
be several truths, and because it is so easy to integrate changes from others, this works.

Accompanying toolset
Git provides a lot of tools that you can work with (Git bisect for one), which makes for a
more productive way of working.

Migrating from CVS Chapter 6

[161]

Detecting file renames
The ability to rename a file is not supported in CVS, and being able to restore the state of
the project when renames have happened is hard. Git uses heuristic rename detection so
that it can analyze whether the content or filename are similar. You can also configure this
detection in order to copy files.

Commit before merge
A side effect of Git, when using a local repository, is that it changes the way commits are
handled in the system. With CVS, you will need to handle conflicts first (if someone else
changed something before you pull to update your working directory and resolve issues).
Having done this, you can commit your changes to the CVS repository. This is called
merge-before-commit. Git works entirely differently, since commits are always done in the
local repository. This commit-before-merge strategy means that you merge changes after
the commit, and it is also possible to ask the other developer to merge and resolve issues. It
can get harder to distinguish changes between commits if there are many merges, but to
retain a nice linear history, it is also possible to mimic CVS behavior by using the Git
rebase mechanism (git pull --rebase) in which you apply changes on top of the
updated state.

The last big difference is in the way people collaborate with each other. Some developers
only need a read-only copy of the original software, but they need anonymous read-only
access to the source code. Both CVS and Git can accommodate this. Things become different
if people want to contribute something back to the project. With CVS, one way of doing this
(like with the Linux kernel) is by sending patches via email. This is done by people who
change a small amount of code. With Git, it is actually very easy to execute your changes on
top of an existing upstream version and then generate an email with git format-patch.
With bigger contributions, the functionality and ease of a pull request become important,
and this was what Git was designed for. All of this happened because of the snapshot
paradigm.

Preparing to migrate from CVS to Git
In the next section, we will look at two tools that can help us migrate repositories.

Migrating from CVS Chapter 6

[162]

Preparing for a conversion using cvs-fast-export
This migration tool was created by Eric S. Raymond, a very well-known writer/developer
who wrote the famous essay The Cathedral and the Bazaar about open source software. He is
also the author of fetchmail (an early open source POP3-client). Let's get started.

For this tool, cvs-fast-export, I will create a CVS project from scratch that we will
convert. Let's get started:

Create a CVS root. This is where the CVS database will reside:1.

 $ cvs -d ~/cvsroot init

Add some variables for CVS to your environment:2.

 $ echo "export CVSROOT=~/cvsroot; export CVSEDITOR=vim" >>
~/.bash_profile
 $ source ~/.bash_profile

As an example, we will create an empty JavaScript project and add it to CVS.3.
First, create a project:

 $ mkdir ~/cvs
 $ cd cvs
 $ mkdir cvsproject
 $ cd cvsproject/
 imac:cvsproject joostevertse$ npm init --yes

Now, let's add the project to CVS:4.

 $ cd ..
 $ cvs import -m "Example javascript project" cvsproject Joost
start
 cvs import: Importing
/Users/joostevertse/cvsroot/cvsproject/cvsproject
 N cvsproject/cvsproject/package.json

 No conflicts created by this import

Now, the project is present in CVSROOT:5.

$ ls ~/cvsroot
 CVSROOT cvsproject

Migrating from CVS Chapter 6

[163]

Now, we need to completely erase ~/cvs/cvsproject because we're going to6.
check it out as a CVS working directory:

$ rm -rf cvsproject/

The next step is checking out the project in CVS, which will create a CVS working7.
copy:

 $ cvs checkout cvsproject
 cvs checkout: Updating cvsproject
 cvs checkout: Updating cvsproject/cvsproject
 U cvsproject/cvsproject/package.json

Looking into the directory reveals a CVS directory structure:8.

$ tree
 .
 ├── CVS
 │ ├── Entries
 │ ├── Repository
 │ └── Root
 └── cvsproject
 ├── CVS
 │ ├── Entries
 │ ├── Repository
 │ └── Root
 └── package.json

 3 directories, 7 files

Let's create an image directory and add it to the repository:9.

$ mkdir images
$ cvs add images
 Directory /Users/joostevertse/cvsroot/cvsproject/cvsproject/images
added to the repository

With the cvs status command, we can check which files have changed:10.

 $ cvs status
 cvs status: Examining .
===
 File: package.json Status: Locally Modified

 Working revision: 1.1.1.1 2018-12-04 23:01:21 +0100
 Repository revision: 1.1.1.1
/Users/joostevertse/cvsroot/cvsproject/cvsproject/package.json,v
 Commit Identifier: xmczkBNhTpkbWw2B

Migrating from CVS Chapter 6

[164]

 Sticky Tag: (none)
 Sticky Date: (none)
 Sticky Options: (none)

 cvs status: Examining images

Let's commit these changes into our CVS repository:11.

 $
ls
 cvs commit: Examining .
 cvs commit: Examining images
 /Users/joostevertse/cvsroot/cvsproject/cvsproject/package.json,v
<-- package.json
 new revision: 1.2; previous revision: 1.1

With the cvs log command, we can see what has changed in more detail:12.

$ cvs log
 cvs log: Logging .

 RCS file:
/Users/joostevertse/cvsroot/cvsproject/cvsproject/package.json,v
 Working file: package.json
 head: 1.2
 branch:
 locks: strict
 access list:
 symbolic names:
 start: 1.1.1.1
 Joost: 1.1.1
 keyword substitution: kv
 total revisions: 3; selected revisions: 3
...

Now, we have a CVS repository that's been prepared for migration with cvs-fast-
export.

Preparing for a conversion using cvs2git
Now, let's take a look the second tool, cvs2git. For this conversion, I took a copy of a
project I have used before (itsmyparty: https://github.com/Joustie/itsmyparty), like so:

 $ git clone git@gitlab.com:joustie/itsmyparty_gitlab.git
 Cloning into 'itsmyparty_gitlab'...
 imac:git joostevertse$ cd itsmyparty_gitlab

https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty
https://github.com/Joustie/itsmyparty

Migrating from CVS Chapter 6

[165]

 imac:itsmyparty_gitlab joostevertse$ tree
 .
 ├── attendees.rb
 ├── attendees.yml
 ├── atttendees.yml
 ├── itsmyparty.rb
....
 1 directory, 12 files

Then, I imported the source code into a CVS repository (I deleted the .git directory first):

 $ cvs import -m "dir structure" cvsexample joost start
 N cvsexample/machines.yml
 N cvsexample/itsmyparty.rb
 N cvsexample/presence.yml
 N cvsexample/atttendees.yml
.....
 No conflicts created by this import

As you can see, no conflicts were created by this import, which is great. We are now ready
to run the conversions.

Running the conversion
There are a couple of ways to convert data from a CVS repository into a Git one. After you
have converted the repository, you need to push this new Git repository to a GitLab server.

Converting data using cvs-fast-export
Perform the following steps for Converting data using cvs-fast-export:

First, download the source from Eric Raymond's site: http://www.catb.org/1.
~esr/cvs-fast-export:

$ wget
http://www.catb.org/~esr/cvs-fast-export/cvs-fast-export-1.44.tar.g
z
$ tar xvzf cvs-fast-export-1.44.tar.gz
$ cd cvs-fast-export*

http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export

Migrating from CVS Chapter 6

[166]

Then, build the software:2.

$ make cvs-fast-export
$ cp cvs-fast-export /usr/local/bin; chmod +x /usr/local/bin/cvs-
fast-export

Go to your cvsroot directory and run the tool in a pipe with find and output3.
the results to a file:

imac:cvs-fast-export-1.44 joostevertse$ cd $HOME/cvsroot
imac:cvsroot joostevertse$ find . |cvs-fast-export >../cv.fi

Then, initiate an empty Git repository:4.

$ cd $HOME/git
$ mkdir cvsproject
$ cd cvsproject
$ git init
 Initialized empty Git repository in
/Users/joostevertse/git/cvsproject/.git/

Now, it's time to use git fast-import to populate our empty Git repository5.
with information from the old CVS project:

$ cat ../../cv.fi |git fast-import
 Unpacking objects: 100% (19/19), done.
 /usr/local/Cellar/git/2.15.1_1/libexec/git-core/git-fast-import
statistics:
...

Now that all the meta information has been converted, the only thing left to do is6.
checkout the code from Git:

$ git checkout
$ git status
 On branch master
 nothing to commit, working tree clean
$ ls
 hello package.json

The CVS project is now available as a Git repository.

Migrating from CVS Chapter 6

[167]

Converting data using cvs2git
Let's take a look at converting data using cvs2git:

The first step is to migrate the CVS data structure to something that could be1.
imported with git fast-import:

$./cvs2git --blobfile=/tmp/git-blob.dat \
 --dumpfile=/tmp/git-dump.dat "--username=Firstname Lastname"
~/cvsroot/cvsexample

Writing temporary files to
'/var/folders/sf/rdjwj43j4kx63xxng1gkgd040000gn/T/cvs2git-ElawtZ
...

The first pass (CollectRevsPass) went through all the version files and2.
analyzed them for revisions. The next 14 passes will transform all kinds of
data from CVS and convert it:

----- pass 2 (CleanMetadataPass) -----
 Converting metadata to UTF8...
 Done
...

Now the tool is will display statistics about the import:3.

 cvs2svn Statistics:

 Total CVS Files: 50
 Total CVS Revisions: 50
 Total CVS Branches: 0
.....

The next step is to create a skeleton Git repository, where we could import the4.
converted data:

$ mkdir itwasmyparty
$ cd itwasmyparty/
$ git init
 Initialized empty Git repository in
/Users/joostevertse/git/itwasmyparty/.git/

Migrating from CVS Chapter 6

[168]

Then, we start the import, with the blobs being imported first (git-blob.dat):5.

$ git fast-import --export-marks=/tmp/git-marks.dat < /tmp/git-
blob.dat

 Unpacking objects: 100% (48/48), done.
 git-fast-import statistics:
....

Then, we import the Git metadata (git-dump.dat):6.

$ git fast-import --import-marks=/tmp/git-marks.dat < /tmp/git-
dump.dat

 Unpacking objects: 100% (23/23), done.
 git-fast-import statistics:
....

Now, all we need to do is checkout the data:7.

$ git checkout
$ git status
 On branch master
 nothing to commit, working tree clean

Now you have a migrated CVS repository.

Cleaning up after migration
Usually, after a migration of some sort, you will need to clean up afterwards. How this will
take place in this situation depends on your use case. If it is a one-off migration, you should
make a tarball of the old CVSROOT and put it on a DVD. You can also choose to let the
repository systems coexist and even perform updates on the CVS repository from Git.
There are also ways to create bidirectional communication (prepare for some shell
scripting).

What definitely needs to happen if you migrated the CVS repository to Git is that you will
need to add a remote that is pointing to your GitLab server. This will be the platform where
pull requests (or, in GitLab speak, merge requests) are created.

Migrating from CVS Chapter 6

[169]

Here, you need create an empty project in your GitLab server and then add the remote, as
follows:

 git remote add gitlab url-to-gitlab-repo
 git push gitlab master

Your old CVS repository will have been converted and pushed to your GitLab server.

Summary
In this chapter, we discussed the origins of CVS. We compared CVS to Git in a variety of
way. The basic difference between the two is that CVS is a centralized versioning system
while Git is of a distributed nature. Afterwards, we set up a basic CVS project and prepared
to migrate it to GitLab. Then, we made a copy of an existing project to be used with the
second tool. Finally, we looked at two different ways of performing conversion to migrate
the repositories.

In the next chapter, we will take a look at what many people consider the enhanced
successor of CVS: subversion. It already incorporates features that are also present in Git.

Questions
What is the biggest difference between CVS and Git?1.
What is the network protocol that's used with CVS called?2.
CVS uses changesets. (True | False)3.
How does Git implement versioning numbers?4.
How can you easily correct a typo in a commit message in Git?5.
Is it possible to rename a file in CVS?6.
What is the command to initialize a new CVS database on your machine?7.
What is the command to initialize a new Git project?8.
Who created the cvs-fast-export tool? 9.
How do you import your migrated repository into GitLab?10.

Migrating from CVS Chapter 6

[170]

Further reading
cvs-fast-export: http://www.catb.org/~esr/cvs-fast-export

cvs2git: https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html

Git Version Control Cookbook - Second Edition By Kenneth Geisshirt, Emanuele Zattin,
Rasmus Voss, and Aske Olsson: https://www.packtpub.com/in/application-
development/git-version-control-cookbook-second-edition

http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
http://www.catb.org/~esr/cvs-fast-export
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.mcs.anl.gov/~jacob/cvs2svn/cvs2git.html
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition
https://www.packtpub.com/in/application-development/git-version-control-cookbook-second-edition

7
Switching from SVN

The shortcomings of CVS have led to the development of other systems, with one of the
most well-known being Apache Subversion (SVN). In addition to the improvements it has
brought, it was specially ensured that is has high compatibility with CVS. It is also open
source licensed (with an Apache license, not GNU). It was started in 2000 by Collabnet Inc.,
but changed to an Apache project in 2009. You can find it at https://subversion.apache.
org.

In this chapter, will we cover the following topics:

The difference between SVN and Git
 Mirroring SVN with GIT
 Using svn2git to migrate in one cut

Technical requirements
To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with the examples from https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter07.

Some example will be executed on macOS and some on Debian 10.

The other requirements for this chapter are as follows:

Git: http://git-scm.org

SVN: https://subversion.apache.org/packages.html

Git LFS: https://git-lfs.github.com

SubGit: https://subgit.com

svn2git: https://github.com/nirvdrum/svn2git

https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://subversion.apache.org
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter07
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://git-lfs.github.com
https://subgit.com
https://subgit.com
https://subgit.com
https://subgit.com
https://subgit.com
https://subgit.com
https://subgit.com
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git

Switching from SVN Chapter 7

[172]

The difference between SVN and Git
Like CVS, the biggest difference between Git and SVN is that SVN follows a centralized
architecture, while Git uses a distributed network. There is one SVN server, and as a client
you communicate your changes with it. This in different to Git, where there can be many
local copies, and one copy can reside on a central server. This architecture is depicted as
follows:

With Git, there are several options to choose from regarding protocol and network settings.
Most importantly, you have the choice to communicate with remotes over SSH or HTTP.
Using SSH, you wrap Git commands, possibly using certificate authentication, and with
HTTP, you implement Git actions using WebDAV and basic HTTP authentication.

SVN has a networking layer that is abstracted, which means that clients exhibit the same
behavior, no matter what sort of server they are operating against.

There are several different server options available, as follows:

The svnserver server: This one is easy to set up, does not need system accounts
on a server, and is faster than WebDAV (which extends the HTTP protocol with
filesystem access). One big disadvantage is that communication using this server
is unencrypted by default.

Switching from SVN Chapter 7

[173]

svnserver through SSH: This has all the advantages we mentioned previously,
but is protected with SSH encryption. It works by tunneling the svnserver traffic
through an SSH session.
The Apache web server with module dav_svn: In this situation, all traffic on the
network layer is carried out over HTTP. The famous Apache web server has
support for WebDAV operations, and there is a specific Apache module that
handles SVN traffic (dav_svn). It is noticeably slower because of the overhead in
the HTTP protocol, but is had the added bonus that repositories are browse-able
through a web browser.

Besides their infrastructural difference, there are also several differences between your local
SVN/Git client.

Security and access control
With SVN, you can set up your server to grant or deny permissions to users. You can even
define finer-grained access rules based on paths. All of this is configured in a central
location. With Git running on your client, there is no access control by default. Your server
implementation or central repository that's running Git must do that for you. GitLab has
this functionality.

The repository's change history is kept centrally on the server in the SVN world, and to
change it you need to gain access to this central place.

Because Git is a distributed versioning system, every developer can make changes to any
part of their local repository history. Although pushing a changed history is heavily
discouraged, it is possible. This can wreak havoc if other developers are depending on
particular changes.

For Git users, the complete history of a repository is saved locally and updated from and to
remotes, so there is always a local copy.

Making regular backups is smart to do with both Git and SVN. Even with a central server
and several distributed copies, you need to stay in sync to keep all the data available.

Switching from SVN Chapter 7

[174]

Space requirements and references
One of the things SVN can do compared to Git is that you can check out parts of the
repository. In Git, the repository can only be cloned as a whole.

In Git, every object has a unique ID, that is, a SHA-1; for instance,
921103db8259eb9de72f42db8b939895f5651422.

 This makes it easier to reference. You can also use a shortened version (921103d):

$ git rev-parse --short 921103db8259eb9de72f42db8b939895f5651422
921103d

In SVN, a file is always the newest version. To reference changes to a file, you need to use
revisions. That revision points to the whole repository.

SVN working directories contain two copies of each file, which is why Git repositories are
generally much smaller – they only contain one copy. A directory with a cloned Git
repository contains a small index file with approximately 100 bytes of index data per
tracked file.

If a project has a lot of files, the difference in size between SVN and Git can become quite
large! A thing most people don't realize is that SVN can track empty directories, while Git
cannot! Only file contents are tracked by Git, so empty directories will not show! The
following diagram shows the way SVN handles changes:

Switching from SVN Chapter 7

[175]

Git, on the other hand, uses the graph model, which is as follows:

As we can see, the difference in size and the ways of referencing between SVN and Git is
very large!

Branching
Both Git and SVN support the use of branches. However, for SVN, branches are part of a
possible workflow and style, while for Git the use of branches is built into the command
palette and standard way of working.

One of the major disadvantages of SVN is the way of branching and merging. It can take a
long time if you have large repositories. If you create a new branch in SVN, you create a
completely new directory within the repository, which means there is repetition in that
structure. When the branch is ready or no longer needed, you commit back to the trunk.

Switching from SVN Chapter 7

[176]

A big technical difference between Git and SVN versions before 1.5 is that Git used three-
way merges as standard, while SVN used two-way merges. It couldn't perform three-way
merges because it didn't store merge information. Git, by using its graph database, can
check where the code bases share a common state and then merge from the diversion point,
which is then technically a three-way merge. In the latest version of SVN, this is also
incorporated because the meta information about branches and merges is kept after
merging. Unfortunately, the basic problem still exists – a branch is a full copy (not a
reference).

At the same time, there can be changes on the trunk already. Your version of it won't have
the changes that are in the branches of developers. This means that you could have
conflicting changes, files, or structures that are missing in your branch.

The main reason developers like Git so much is the power of the branching model.
Comparing it to the many repetitions in SVN, Git only creates references to a specific
commit, so there's less repetition and less waste of space and I/O. Instantiating the reference
by creation, deletion, or changing a branch will not affect the commits. Want to try
something? Fix a bug quickly? Just create a branch, edit files, and push the commits to the
central repository, then delete the branch. Create them lightheartedly!

Handling binaries with SVN and Git
Speed is often recited as the main advantage Git has over SVN. This is not exactly the case
when handling binary files. If developers checkout full repositories every time and they
contain changing binary files, you lose this speed advantage.

In SVN, only the working tree and the latest changes are checked out to the local system.
When many changes are made to binary files, checking them out in SVN takes less time
than with Git.

Of course, there are workarounds for storing binary files in Git repositories, the most
famous being Git LFS (https://git-lfs.github.com/). This is a solution that was
developed by GitHub and is an extension to Git. With it, you store a pointer inside your
repository instead of in a big binary file. Still, every developer action leads to a pile of
changed history data. This is going to make operations perform slower.

https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/

Switching from SVN Chapter 7

[177]

GitLab also supports Git LFS operations. Depending on how you or your administrator
configured GitLab, the location of LFS uploaded data can be on the GitLab server itself, or
on shared server storage that's connected to you GitLab server. Alternatively, it can be
stored on an S3-compatible service.

You can install Git LFS on several platforms (https://github.com/git-lfs/git-lfs/wiki/
Installation). The main requisite is that you have installed Git version 1.8.2 or higher.

Let's try using git-lfs:

We will try this on macOS and install it with brew:1.

$ brew install git-lfs
 ==> Downloading
https://homebrew.bintray.com/bottles/git-lfs-2.6.1.high_sierra.bott
le.tar.gz
 ==> Downloading from
https://akamai.bintray.com/0d/0daf04ca0a32e208be0e6df07c42a1ab049a3
e50c962b04ea650a626a97920bb?__gda__=exp=1545082825~hmac=321540978a3
2b9bda7e114cc68cdddb1c772d02d8c93ed919a0d04bff4075377&respo
###
100.0%
 ==> Pouring git-lfs-2.6.1.high_sierra.bottle.tar.gz
 ==> Caveats

Update your Git configuration to finish the installation:2.

 $ git lfs install
 $ git lfs install --system

When you have Git LFS installed, you need to enable the functionality for your3.
local repository:

$ git lfs install
 Updated git hooks.
 Git LFS initialized.

Tell Git which kind of files you consider large. After this, add the4.
.gitattributes file to the commit:

$ git lfs track "*.dmg"
 Tracking "*.dmg"
$ git add .gitattributes

https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation
https://github.com/git-lfs/git-lfs/wiki/Installation

Switching from SVN Chapter 7

[178]

The next step it to just add and commit your changes:5.

$ git add .
$ git commit -m "Testing lfs"
 [master eb9ed7c] Testing lfs
 2 files changed, 4 insertions(+)
 create mode 100644 .gitattributes
 create mode 100644 OpenRA-release-20180923.dmg

Now, when you push the repository to the remote server, you will notice a6.
different behavior. Git LFS is handling part of the upload:

$ git push
 Locking support detected on remote "origin". Consider enabling it
with:
 $ git config
lfs.https://gitlab.com/joustie/itsmyparty_gitlab.git/info/lfs.locks
verify true
 Uploading LFS objects: 100% (1/1), 35 MB | 979 KB/s, done
 Counting objects: 4, done.
 Delta compression using up to 16 threads.
 Compressing objects: 100% (3/3), done.
 Writing objects: 100% (4/4), 487 bytes | 0 bytes/s, done.
 Total 4 (delta 1), reused 0 (delta 0)
 To gitlab.com:joustie/itsmyparty_gitlab.git
 6b64bcc..eb9ed7c master -> master

So, even with SVN handling files faster, if you use Git LFS, you get the same advantages.

If you compare Git LFS with SVN on a basic level, then SVN is faster when it comes to
handling binary files. If you use additional Git LFS for Git, they perform approximately the
same.

Mirroring SVN and GIT
In order to mirror SVN with Git, we will use the SubGit tool (https://subgit.com/), which
is maintained and sold by TMate software. You can download a version for your operating
system or choose the basic one, which is a multiplatform Java binary. If you unzip the
package you downloaded, the SubGit tool can be found in the bin directory.

https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/

Switching from SVN Chapter 7

[179]

SubGit should be set up on your Git server. It will scan the settings for the remote SVN
repository you specify, then download SVN revisions and convert them into Git commits.
SubGit keeps both repositories synchronized. When a user pushes a new commit to Git,
SubGit converts and tries to update SVN. It also gets new revisions from SVN as soon as
they appear. SVN and Git users see each other's commits as if they were all working on the
same versioning system. SubGit makes sure that possible conflicts don't occur between the
systems and maintains the integrity of the mirror.

Keep in mind that for this sync to work, your GitLab server should not use hashed storage.
Hashed directory names are not very usable in this context.

Furthermore, the following examples will be executed on a Debian 10 machine, which is
why the apt-get package manager is used.

Running SubGit in mirror mode requires that you register the software at TMate software.
Registration is free for open source, academic, and start-up projects:

First, create an empty project in GitLab:1.

Switching from SVN Chapter 7

[180]

Then, open a Terminal on the machine where your GitLab instances are running2.
and create the following environment variables. SVN_PROJECT_URL should
contain a link to the SVN project you want to copy/convert/mirror:

$ export GIT_REPO_PATH=$HOME/git/pdf.git
$ export SVN_PROJECT_URL=svn://svn.riscos.info/pdf/trunk/

Make sure that you have Java configured on the machine:3.

$ apt-get install openjdk-8-jdk
Reading package lists... Done
Building dependency tree
Reading state information... Done
...
...
Setting up openjdk-8-jdk:amd64 (8u191-b12-0ubuntu0.16.04.1)
...

Now, we can start the first run of the SubGit tool, which configures everything in4.
order for the mirroring or one-time migration to succeed (I have copied the
subgit binary from the package to /opt/subgit/bin):

$ /opt/subgit/bin/subgit configure --layout auto $SVN_PROJECT_URL
$GIT_REPO_PATH
 SubGit version 3.3.5 ('Bobique') build #4042

 Configuring writable Git mirror of remote Subversion repository:
 Subversion repository URL : svn://svn.riscos.info/pdf
 Git repository location : /var/opt/gitlab/git-
data/repositories/root/pdf.git

 Git repository is served by GitLab, hooks will be installed into
'custom_hooks' directory.

 Peg location detected: r35 trunk
 Fetching SVN history... Done.
 Growing trees... Done.
 Project origin detected: r1 trunk
 Building branches layouts... Done.
 Combing beards... Done.
 Generating SVN to Git mapping... Done.

 CONFIGURATION SUCCESSFUL

Switching from SVN Chapter 7

[181]

To complete SubGit installation and have it running continuously, do the following:

Adjust Subversion to Git branch mapping if necessary in the following file:1.

/var/opt/gitlab/git-data/repositories/root/pdf.git/subgit/config

Define at least one Subversion credential in the default SubGit password file, as2.
follows:

/var/opt/gitlab/git-data/repositories/root/pdf.git/subgit/passwd

Alternatively, you can configure SSH or SSL credentials in the [auth] section of
the following root:

/var/opt/gitlab/git-data/repositories/root/pdf.git/subgit/config

Optionally, add custom authors mapping to the authors.txt file(s) in the3.
following file:

/var/opt/gitlab/git-
data/repositories/root/pdf.git/subgit/authors.txt

Run the subgit install command:4.

$ subgit install /var/opt/gitlab/git-data/repositories/root/pdf.git

If you query the process list, you will see that the SubGit daemon is running:

$ ps ax |grep subgit |grep -v grep
 17314 ? Ssl 0:00 /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java
-noverify -client -Djava.awt.headless=true -Djna.nosys=true -cp
/var/opt/gitlab/git-
data/repositories/root/pdf.git/subgit/lib/subgit-3.3.5_4042_fat.jar
org.tmatesoft.translator.SubGitDaemon test --svn /var/opt/gitlab/git-
data/repositories/root/pdf.git --limit 1544992584093

If you view the project in GitLab directly after the installation done with SubGit, you will
find that there is still nothing visible. This is because of caching the user interface. So far, we
have done operations on the filesystem and we need to flush the Redis cache.

Switching from SVN Chapter 7

[182]

You can use the following command on the GitLab server to do this:

$ gitlab-rake cache:clear

Now, the imported project should be visible:

We now have two source code repositories that are in sync. Sometimes, you only need one-
way conversion, and this is what we will be covering in the next section.

No sync, just convert
You can also use the SubGit tool to do a one-time migration. You don't need a license for
this, and it's free. Just download the tool and run it.

So, instead of using install, which enables synchronization, just use import as an
argument:

$ /opt/subgit/bin/subgit import $GIT_REPO_PATH
 SubGit version 3.3.5 ('Bobique') build #4042

Switching from SVN Chapter 7

[183]

 Translating Subversion revisions to Git commits...

 Subversion revisions translated: 35.
 Total time: 9 seconds.

 IMPORT SUCCESSFUL

After this has completed, you can refresh the cache to see the changes being reflected in the
web UI.

A one-time conversion is an easy operation to perform compared to a sync, but there is
another tool that can do this as well.

Using svn2git to migrate in one cut
As you have seen with SubGit, it is possible to create a syncing solution between SVN and
Git. In reality, most of the time, when you want to migrate to a new system, you will want
to do it in one go. It decreases the margin of error and is easier to reason about. So, when
you do such a hard cut over, make your developers use the new repository. Setting up
syncing will not help you migrate in the long run. In comparison to SubGit, you can use
your own workstation to do the conversion.

You can use a tool such as svn2git (https://github.com/nirvdrum/svn2git) to do a
conversion in one step. On your workstation, you can install it as a Ruby Gem if you
already have Ruby and Git installed:

$ sudo gem install svn2git

On Debian-based Linux distributions, you can install the native packages:

$ sudo apt-get install git-core git-svn ruby

If you need the authors in your project to display correctly, you can make sure that
mapping the authors from SVN to Git is performed correctly as part of the conversion. It
depends on whether you create an authors file or not. If you choose not to, then no
mapping will be performed. In some situations, this can be an issue, while some users don't
care at all. If you want to map users, make sure you map every author in the SVN
repository. Failing to do so will result in a failed conversion, and you will have to start
again.

https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git

Switching from SVN Chapter 7

[184]

By using the following command, you will get a list of authors that are present in the
repository. Run the following in the SVN source repository. I have done so on my
workstation:

$ svn log --quiet | grep -E "r[0-9]+ \| .+ \|" | cut -d'|' -f2 | sed 's/
//g' | sort | uniq
 cgransden
 peter

In this case, there are only two authors. Use the following output to create the
authors.txt file and map authors line by line:

cgransden = cgransden <cgransden@gitlab.joustie.nl>
 peter = peter <peter@gitlab.joustie.nl>

The repository we are converting has a reasonable default structure. It has a trunk,
branches, and tags. If your SVN repositories are more complicated, you have to use more
options. You can find these in the svn2git documentation on the home page shown earlier,
or use svn2git --help.

Make sure that you run the svn2git conversion command in an empty directory.

The default format of the svn2git command line is
https://svn.example.com/path/to/repo --authors /path/to/authors.txt.

In my example, we are not changing authors, so we'll leave them out. If your SVN
repository is protected by a username and password, you can add the --username
'password' and --password 'password' options as well:

$ svn2git svn://svn.riscos.info/pdf
 Initialized empty Git repository in /Users/joostevertse/svn/pdf.git/.git/
 r1 = 154856522ddf7c81f34dc80b11a41b963dcc2c13 (refs/remotes/svn/trunk)
 A !PDF/!sprites22,ff9
 A !PDF/Documents/Help.html,faf
 A !PDF/Documents/Licences/Copying
 A !PDF/Documents/Licences/BSDLicence
 A !PDF/Documents/Licences/README
...

The next step is to finish the conversion by pushing your migrated repository to GitLab. It's
best to create an empty project in GitLab and fetch the projects HTTP or SSH location. Then,
you can add it as a remote to your local repository and push it. This will contain all the
commits and branches.

Switching from SVN Chapter 7

[185]

When the conversion is complete, you can import the project into GitLab by creating a new
remote locally and push the repository:

$ git push --all origin
 Counting objects: 1009, done.
 Delta compression using up to 16 threads.
 Compressing objects: 100% (414/414), done.
 Writing objects: 100% (1009/1009), 1.39 MiB | 0 bytes/s, done.
 Total 1009 (delta 591), reused 1009 (delta 591)
 remote: Resolving deltas: 100% (591/591), done.
 To https://gitlab.joustie.nl:8443/root/pdf.git
 * [new branch] master -> master

If you have tags, don't forget to push them, too:

$ git push --tags origin
Everything up-to-date

This finalizes the conversion using svn2git, the second tool that you can use to perform a
one-off migration of SVN to Git.

Summary
In this chapter, we started by tracing the origins of SVN and why it rose to popularity.
Afterwards, we made a comparison between SVN and Git on certain aspects that are
relevant for versioning systems, such as architecture, branching methods, and how to deal
with binary files.

The second part of this chapter deals with ways to migrate SVN projects to Git. The first
tool we discussed was SubGit. It is capable not only of migration projects from SVN to Git,
but can also act as a proxy and let both repositories coexist. The second tool we talked
about was svn2git, which does a migration in one cut. The other notable difference between
these tools is that SubGit is installed on your GitLab server, while svn2git can be run from
your workstation.

In the next chapter, we will take a look at another type of source control system. This one is
created by Microsoft and not open source.

Switching from SVN Chapter 7

[186]

Questions
What is the home page of the SVN project?1.
What is the biggest difference between SVN and Git?2.
Name the three different ways to run a SVN server.3.
With SVN, where is the history of a project saved?4.
Git uses SHAs, but what does SVN use?5.
What type of merge did SVN versions before 1.5 perform?6.
What version of Git is needed for Git LFS?7.
Name two ways that GitLab implements LFS as storage backend.8.
What two mechanisms does SubGit support for migration?9.
When you use svn2git, what is the last step of migrating to GitLab?10.

Further reading
SubGit: https://subgit.com/

svn2git: https://github.com/nirvdrum/svn2git

SVN redbook: http://svnbook.red-bean.com/

SVN documentation: https://subversion.apache.org/docs/

https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://subgit.com/
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
https://github.com/nirvdrum/svn2git
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/
https://subversion.apache.org/docs/

8
Moving Repositories from TFS

Team Foundation Server (TFS) is the collaboration platform and foundation of Microsoft's
Application Life Cycle Management (ALM) solution, which comes with code version
management (including package management (NuGet, Maven, and so on)), work item
management, extensive reporting and dashboard capabilities, automated build and release
management, and test management. Through extensive integration with development tools
such as Visual Studio, TFS is used to communicate and collaborate with the process of
designing, building (continuous integration), testing, and deploying (continuous delivery)
the software, which should ultimately be used to increase productivity and team output,
improve quality, and gain more insight into the application life cycle.

In this chapter, we will compare TFS to Git, and then we will migrate a TFS repository to
Git that is in the old TFVC (Team Foundation Version Control) format. Note that,
nowadays, Microsoft has standardized on Git for version management, so TFVC is not
widely used anymore.

In this chapter, we will cover the following topics:

 TFS versus Git
 The git-tfs tool

Technical requirements
To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with the examples, from https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter08.

The other requirements for this chapter are as follows:

Git: http://git-scm.org

Azure DevOps account: https://azure.microsoft.com/nl-nl/services/
devops/

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter08
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
http://git-scm.org
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/

Moving Repositories from TFS Chapter 8

[188]

Git-tfs: https://github.com/git-tfs/git-tfs

GitLab account: (https://gitlab.com or on premise)

TFS versus Git
Microsoft created TFS as a product to help teams create software.

It has the following features:

Source code management
Requirements management
Lab management
Reporting
Project management (for Agile software and waterfall development)
Automated builds
Testing
Release management capabilities

The solution was created to help across the entire life cycle of the product (ALM). It can
cooperate with several Integrated Development Environments (IDEs), but works best with
Microsoft's own Visual Studio, which nowadays is multiplatform.

It has been around for some time, but currently the focus is on getting customers to use the
Cloud version of TFS: Azure DevOps. You get all the features of TFS on premise, but it is
much more scalable.

For source code management, two different kinds of repositories are supported. Originally,
the default was Team Foundation Version Control (TFVC), which resembles SVN and is
very much a centralized Version Control System (VCS). The other choice is Git. Over the
past few years, Git has been adopted as the default VCS within Microsoft. You probably
won't find a team that doesn't use Git within Microsoft (well, maybe the team that's
responsible for TFS).

If you want to migrate your TFS Git repository to GitLab, it's very easy. For instance, you
can move a repository to a new one in an on-premise GitLab:

 cd existing_repo
 git remote rename origin old-origin
 git remote add origin https://gitlab.example.com/me/newprojectingitlab.git
 git push -u origin --all
 git push -u origin --tags

https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com

Moving Repositories from TFS Chapter 8

[189]

Migrating a TFVC project takes a bit more effort, which I will explain later. First, let me
explain the differences between TFVC and Git. We will start with the most important one:
whether it is centralized or decentralized.

Centralized or decentralized
The basic design of TFVC is that of a centralized repository on a server with authorized
clients connecting to it to exchange information. Git's distributed nature is the complete
opposite, with no central authority by default and the possibility to freely push and pull
changes with others. Of course, you can create a central server that harbors a copy of the
Git repository that everyone agrees is the newest version. This difference can be seen in the
following diagram. The Git repository can exist in a local TFS or the Azure instance, while
the TFVC one can only exist in one central place:

Handling changes
The best tool that you can use to work with TFVC is without a doubt Visual Studio. Let's
discuss some points regarding the way it handles changes in your files.

Moving Repositories from TFS Chapter 8

[190]

Branching and merging capacity
Compared to branches in Git, which are repository scoped, TFVC branches are path scoped
and not as lightweight. Generally speaking, team members create additional workspaces
for each branch they are working on. Changes are branch-independent, so to avoid chaos at
integration time, you need to forward-integrate as many times as possible. The standard
merge with TFVC uses a two-way merge (baseless).

Set your bar for creating branches high and only branch when you have a need for code or
release isolation. It's more resource-intensive to use branches in TFVC. As the number of
your feature branches increases, so do your storage requirements and branch hierarchy
visualization fuzziness. In the following screenshot, you can see the situation as a
developer; you can't merge because of conflicts:

In Git, a branch is only a pointer to a commit. The default diff in Git uses three-way
merging, which also helps developers merge back.

Moving Repositories from TFS Chapter 8

[191]

History
Because of the centralized nature of TFVC, some pieces of information are not available
when you are not connected. File history is not replicated to the client's development
machine and can only be viewed when you are online with the server. This information is
viewable via Visual Studio and the web portal. Via the context menu of an item, you can
annotate files to see who changed a line, and when they changed it. The following
screenshot shows what sort of information is given in the web portal:

With Git, file history is replicated on the client's development machine. You can also view it
when there is no connection to the TFS server. You can view history in Visual Studio and
on the web portal, as well as on the specific Git server you are using, such as GitLab. By
using Git's command option, you can find out who changed which lines in a file, and why.
It can be a useful tool for identifying changes in your code as annotation is in TFVC. See the
following git blame command:

$ git blame BSDLicence
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 1) The files
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 2)
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 3) !PDF.Res
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 4) !PDF.Sprites
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 5) !PDF.Sprites22
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 6) !PDF.Messages
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 7) !PDF.Documents.Help/html
 e2cc9eb2 (peter 2010-01-08 20:35:51 +0000 8) !PDF.Documents.Help/txt

We can see that peter changed this file.

Moving Repositories from TFS Chapter 8

[192]

Traceability
For some use cases, it is of the utmost importance to have good traceability. Think of
companies such as banks and insurance companies who have to adhere to strict policies
because of legislation. Since TFVC is a centralized repository type, its traceability is quite
good out of the box. All change operations are recorded on the server and performed only
by authorized individuals. There are direct links between issues, bugs, boards, and backlog
items.

With Git, it is possible to setup the same system, but you need to make sure that your
centralized repository enforces some extra checks and handles linking between entities
(issue tracking in GitLab, for instance). By default, anyone can change the history of a Git
repository, so out of the box, the traceability in Git is not very good.

File handling
Another big difference between Git and TFVC is when it comes to handling changes. This is
connected to the fact that TFVC uses a central repository and Git is, by its nature,
distributed. TFVC, with its central server, keeps all the files in a project under a single root
path. Within this context, it is possible to apply permissions at a file level or lock files on the
central server. By default, this is not possible with Git or with the basic GitLab
configuration since there is no central place where you can enforce these authorizations.
You can lock files somewhere, but a developer can happily continue developing locally and
change code.

On the other hand, with Git, you can have multiple repositories in a GitLab project and
have protection on a branch level or repository level. You have the option to define
multiple remotes to which you can push code. This means that you can store code in GitLab
and also on Windows Azure. The following screenshot shows the menu that you can use to
lock a file in TFVC:

Moving Repositories from TFS Chapter 8

[193]

With TFVC, the files are all under one path and under control while in Git, there can be
many branches and files spread over different remote servers. It's hard, if not impossible, to
enforce centralized control.

The git-tfs tool
There are several ways to migrate data from TFVC to Git. The simplest way is to do the
migration in TFS itself. You can use their own import/export tools from the https://docs.
microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops
tabs=new-navviewFallbackFrom=vsts website.

There is also another tool that can be used for migration. It is possible to have a bi-
directional gateway between TFS and Git, just like there is with git-svn. It can put TFS
commits into a Git repository, and allows you to push back changes to TFS.

The existence of these tools is caused by the fact that Microsoft internally switched to Git
years ago and they have contributed a lot of source code to the codebase of Git. That is why
it is standard (especially with Azure) to create new repositories using the Git format
nowadays.

https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/repos/git/import-from-tfvc?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts

Moving Repositories from TFS Chapter 8

[194]

Preparing to migrate
In this section, we will demonstrate how to migrate a TFVC project located on Azure
DevOps. First, we will locate our project on Azure DevOps. You can do this by navigating
to your organization at https://dev.azure.com. Setting up an organization is outside the
scope of this book, but it is quite easy and free if you are a small company or an open
source project. You can read more about this on the Azure page, here: https://azure.
microsoft.com/nl-nl/services/devops/.

The project page for the git-tfs migration tool can be found on GitHub (https://github.
com/git-tfs/git-tfs). Before you install git-tfs, there are a few prerequisites you need to
take into account:

You need a Windows machine to install it with.
It has to have Git for Windows.

The git-tfs binaries can be downloaded from https://github.com/git-tfs/git-tfs/
releases. Alternatively, you can do a managed install with chocolatey (https://
chocolatey.org/). Installing with such a package manager takes care of the necessary
details for you. Of course, you could build the package yourself because the source is also
available. For these examples, we will use a basic Windows machine I already have set up.
Let's get started:

It's easy to install Git using chocolatey:1.

https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://azure.microsoft.com/nl-nl/services/devops/
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://github.com/git-tfs/git-tfs/releases
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/

Moving Repositories from TFS Chapter 8

[195]

The next step is to install git-tfs using the gittfs package:2.

Moving Repositories from TFS Chapter 8

[196]

In order to perform the migration, we need to create a new project in our GitLab3.
instance so that we have a destination for our Azure DevOps project:

Moving Repositories from TFS Chapter 8

[197]

Now, we will use the git-tfs tool to clone the test project we created in Azure4.
DevOps. It will bring up an authentication window:

Moving Repositories from TFS Chapter 8

[198]

It will automatically search through change sets and convert them into Git:5.

To copy this local Git repository to our GitLab project, we need to create a remote6.
entry:

C:\git\MovingToGitlab>git remote add origin
https://gitlab.joustie.nl:8443/root/movingtogitlab.git

Then, we will use push -u to push it to GitLab. Git for Windows will present7.
you with a login screen, which you can authenticate against gitlab.joustie.nl:

https://gitlab-ee.joustie.nl/users/sign_in

Moving Repositories from TFS Chapter 8

[199]

When the migrations are finished, you can log in to your GitLab project. Here,8.
you will find the pushed code:

You can view the commit history in Git with git log:9.

Moving Repositories from TFS Chapter 8

[200]

If you compare it with the history in TFVC, you will find it to be the same:10.

By using the git-tfs tool, it is relatively easy to migrate your existing TFVC to Git.

Summary
This chapter explained what TFS is and where its place is in the Microsoft product gamma.
First, we compared TFVC and Git in terms of their architecture, as well as the way they
handle branching and merging. We also took a look at how they treat history and the
traceability of changes.

From there, we learned that there are different ways to migrate from TFS to Git. For one,
you can export from the server itself. There's also a tool that you can use to create a mirror
between a TFS and a Git repository that's called git-tfs. The most logical reason for this tool
to exist is because, nowadays, Git relies heavily on Git repositories and needs to convert
TFVC projects into Git format internally.

This chapter ends the part of this book about migrating data from other systems to GitLab.
In the next part, we will extensively discuss the ways of connecting to GitLab.

Moving Repositories from TFS Chapter 8

[201]

Questions
What is TFS used for in Microsoft's ALM suite?1.
What is the biggest difference between TFVC and Git?2.
TFS is part of what product in Azure?3.
How do you migrate a TFS Git repository to GitLab?4.
How are branches scoped in TFVC?5.
Where is history kept with TFVC?6.
What tool resembles git-tfs?7.
What tool on Windows makes it easy to install Git?8.

Further reading
Microsoft Team Foundation Server 2015 Cookbook by Tarun Arora: https://www.
packtpub.com/networking-and-servers/microsoft-team-foundation-server-
2015-cookbook

Implementing DevOps with Microsoft Azure by Mitesh Soni: https://www.
packtpub.com/networking-and-servers/implementing-devops-microsoft-
azure

TFS site: https://visualstudio.microsoft.com/tfs/

Git-tfs: https://github.com/git-tfs/git-tfs

https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/microsoft-team-foundation-server-2015-cookbook
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs
https://github.com/git-tfs/git-tfs

3
Section 3: Implement the
GitLab DevOps Workflow

In this section, you'll gain an understanding of, and able to implement, all of the features
GitLab provides in a workflow, or pick the required parts of the workflow.

This section comprises the following chapters:

Chapter 9, GitLab Vision - the Whole Toolchain in One Application
Chapter 10, Create Your Product, Verify, and Package it
Chapter 11, The Release and Configure Phase
Chapter 12, Monitoring with Prometheus
Chapter 13, Integrating GitLab with CI/CD Tools

9
GitLab Vision - the Whole

Toolchain in One Application
This chapter is intended to provide more insight into the background against which GitLab
has arisen. The product was literally created to help solve a number of problems that the
Agile movement experienced. We will talk about the history of development
methodologies and the rise of Agile as the dominant way to develop software. The Agile
methodologies spilled over to the traditional operations department, which then led to the
DevOps movement. Finally, we will summarize a number of tools that are part of the
DevOps way of working.

In this chapter, we will cover following topics:

The Agile Manifesto
Extreme Programming (XP)
The DevOps movement
The toolchain

Technical requirements
To follow along with the instructions in this chapter, please download the Git repository
with examples available from GitHub at https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter09.

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[204]

The Agile Manifesto
Some people in the 1990s had a problem with the classic engineering mindset of comparing
software development to build engineering. Instead of trying to keep the requirements
stable and not let them get out of hand through requirements creep or scope creep, they
looked for a process that did not depend on the stability of requirement. Those people came
up with a number of different ideas in response, and those methods are commonly known
as lightweight methods. All of these form the Agile movement, together with lean
manufacturing methods, and have grown very popular over time.

Now, what is it about Agile that everyone says nowadays? For some, it's way of life and of
looking at things. In IT, according to Google, it is a method of project management, used
especially for software development, that is characterized by the division of tasks into short
phases of work and the frequent reassessment and adaptation of plans.

Officially, Agile is not a method, but a collective term. Agile was born from several other
methods to develop products (mostly software). Examples include XP, Scrum, the Dynamic
Systems Development Method (DSDM), Adaptive Software Development, and Crystal.
These methods share the common characteristic that they all aim for less bureaucracy
during product and software development, and embrace change. In the 1980s and 1990s,
these separate methods were developed by various experts, who eventually set up the
Agile Manifesto in 2001. These were mainly intended to prevent problems with the
application of traditional waterfall methods.

All of the big names from different Agile disciplines eventually decided to come together
informally and discuss ways to help IT improve. The Agile Manifesto was drawn up during
this meeting of 17 software developers. It took place from February 11 to February 13, 2001,
at The Lodge in Snowbird, Utah. The name Agile was also chosen here. Word has it that the
name lightweight method was on the table, but Agile was eventually chosen.

The initial model – waterfall
When people talk about the origins of the waterfall model, it is often said that W. W. Royce
introduced it in 1970 in the paper, Managing the Development of Large Software Systems
(http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf). Royce himself
actually believed in the iterative approach to software development and did not even use
the term waterfall. Royce described the waterfall model as a method he thought was too
extreme – and even an proposition doomed to fail: "I believe in this concept, but the
implementation described above is risky and invites failure", Royce wrote.

http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[205]

In 1970, Royce thought that the waterfall method had to be seen as an initial concept, as he
felt there were errors in the method. He published a document examining how the initial
concept could be developed into a repeated method. In this enhanced model, there was
more feedback between each phase than the previous phase, as we now often see in the
current methods. Annoyingly for Royce, only the initial method got attention, and the
criticism he had on this method was largely ignored.

Royce's intention was to transform the model from the paper into an iterating model; still,
the original method has been widely used and idealized. However, people who oppose this
model think it is too basic and has no real practical use. The following diagram illustrates
the waterfall model:

The waterfall model consists of the following phases:

Definition study/analysis (Requirements/analysis): In this phase, the only goal
is to search for requirements. Some research is done to clarify the purpose of the
software.
Basic design (Design): In this phase, what has emerged during the first phase
becomes clearer. The customer wishlist is put on paper and the user interface of
the program is already being considered. Generally speaking, in this phase, it is
recorded what the future system must do.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[206]

Technical design/detail design (Design): A prototype or minimal program can
already be built using the basic design. During this phase, consideration is given
to the possibilities of achieving the desired functionality technically. The options
are already grouped in modules, functions, or programs.
Construction/implementation (Coding): In the construction phase, the actual
source code is written for the program.
To test (Testing): In the testing phase, it is checked whether the software is built
properly according to the design. Here, errors can also emerge that have already
been made in earlier stages. In the theoretical model, this should not happen.
Integration (Testing): The system should now be ready and tested. However, it
should also work with other pieces of software or hardware. There are special
tests for this that make sure the integration works.
Management and maintenance (Maintenance): In order to ensure that the
system continues to operate and function according to specification, maintenance
will have to be carried out.

To summarize, the waterfall model consists of different phases. Each phase has its own
level that also determines the sequence. The highest level is executed first before the
following, lower phases. This is equal to the natural effect of a waterfall, hence the name.

To mitigate the cons of the original method, several enhanced forms were developed.

Royce's model
Royce's model describes a different waterfall model that can go back to previous phases.
Often, it will become apparent at a particular phase that something went wrong in a
previous phase (this will most commonly surface in testing phases). It should then be
possible to go back to a previous phase easily. 99% of the time, changes to the design have
to be made – nobody is perfect, so this model is more realistic. Nevertheless, Royce
continued to emphasize the importance of good documentation for proper phase
transitions.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[207]

The following diagram illustrates Royce's model:

The sashimi model
The sashimi model, designed by Peter Degrace, is one of the models discussed in the
book, Wicked Problems, Righteous Solutions: A Catalog of Modern Software Engineering
Paradigms. This model assumes the same phases as the waterfall model, but that they can
overlap (even more than once). This way of working means that fewer resources are
wasted. In the following diagram, you can see how the phases can overlap. What matters is
that there are no hard endings of phases or gateways. You can see the current time as an
example. Another aspect of this figure is that, in contrast to the waterfall model, the lead
time is also included in the model. This is to indicate that you can already start designing,
even if the analysis is not yet complete. It also means that you can go back to the analysis in
the design phase.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[208]

The following figure illustrates the sashimi model:

The V-model
The V-model shows the phase transitions within software development, which offers the
possibility of QA. For every phase transition, the developers and the customer make quality
agreements about, for example, the designs. The V shape illustrates that at the bottom of
the shape, after real implementation, there will be an ever-growing understanding of the
problem that is being solved, and that initial ideas and requirements are tested against
reality.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[209]

The following diagram illustrates the V-model model:

The sequential way of working that is presented here in these methods fits classic
engineering methods. For a long time during the 1970s and 1980s, it was believed that
software engineering as a discipline should work in a similar way to how engineers build
skyscrapers. Skyscrapers are built by first creating a detailed architectural plan before
construction workers can carry out the building phase. To create an architecture and a plan
in such a way, you need a very clear understanding of what needs to be built. What is
important here is that the upfront requirements are clearly outlined and do not change
along the way. If the expectations of real-world engineering projects changed as rapidly as
they do in software, however, nothing would get built.

DSDM
The DSDM is derived from the linear Software Development Methodology (SDM) model,
which originated in the 1990s. It was an answer to the problem that, in linear methods, the
functionality to be developed is often available too late as a whole. If the functionality to be
delivered can be divided into sub-functionalities, these sub-functionalities can be delivered
separately. We call this incremental system development or step-by-step development. In
the beginning you want to find out which functionality can be split off. This means that the
first two phases from the waterfall approach are completed, but only when the partial
functionalities are clear can these be developed step by step in parallel.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[210]

DSDM is more than just applying iterations at development stages. All of the remaining
phases after analysis are iterative. In addition, the division of phases looks slightly
different. In contrast to the linear development model, it is also possible to go back to
previous phases.

The phases within DSDM are structured as follows:

Feasibility study
Business analysis
Functional model iteration
Design and construction iteration
Implementation

Timeboxing is one of the core practices used in DSDM to control each stage, which is
combined with better prioritization with MoSCoW. We will explain this in the following
section.

Timeboxing
In order to ensure that a project can be of service to the organization in time, timeboxes are
used. For example, the functionality with the highest priority should always be delivered
within a timebox. If there is time and space left, then there will be room for functionalities
with a lower priority. A timebox is a time interval in which an intermediate product is
delivered. During the project, the precise functionality is refined further. Due to growing
insights and changing circumstances, the specifications of a functionality can also change.

A timebox is prepared, in which must-haves, should-haves, and (possibly) could-haves are
defined. This layout allows you to create room for manoeuvre without affecting the end
time of the timebox. In other words, in the case of changing insight or emergencies, you will
be able to re-prioritize. This may be at the expense of should-have and could-have system
requirements. By applying MoSCoW, you make these choices explicit.

With this technique, you can keep constant focus on functional requirements with the
highest priority, monitor your time and budget, and still be able to act when insights
change. Using this technique enables you to give priority to the system requirements that
give a company the most benefit, and lower the priority for requirements that were derived
from situations that may never occur. This also makes systems simpler in
design—something that improves their maintainability.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[211]

The classification of requirements and wishes based on the MoSCoW classification also
helps users to visualize the support for a project within an organization. There are now
authors who think that you should consider projects as clusters of micro-projects. Every
micro-project is a requirement or a wish with a certain priority. In many projects, the
support from stakeholders starts to crumble when people are confronted with changes. If a
project includes many must-haves, this risk will be smaller than when it largely consists of
would-haves.

MoSCoW
It often happens that a project is hindered by too many wishes from the user organization.
However, a development strategy that provides feedback to the customer can prevent over-
demanding the development organization. DSDM counteracts this by dividing the
functional requirements and wishes into a number of categories in which the priority is
indicated for each functionality.

DSDM uses the MoSCoW rules to determine the priorities for requirements and wishes.

MoSCoW stands for:

Must-have: This category has the highest priority, is guaranteed to be delivered,
and counts as the engine of the information system.
Should-have: A necessary requirement where a (temporary) workaround is
possible.
Could-have: A requirement with a clear added value, but without it there is still
a usable system.
Would-have (or want to have but won't have this time around): This
requirement can be missed, although it does not mean that it is not relevant; in
the next increment, it can be a must-have.

Nowadays, DSDM is not extensively used. The last decade has seen other methods gain a
lot more popularity, especially Agile methods such as Scrum, which we will discuss next.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[212]

Scrum
The next lightweight model we will touch upon in this book is called Scrum, which, as of
2018, has been widely adopted outside the IT realm. It is not a method such as DSDM and
can be better described as a framework. It uses the paradigm of a sports team (rugby, to be
exact), where a group of people work together to achieve a goal. In the rugby game, a
scrum drives the ball into the game. The scrum group consists of five to eight players who
operate as a unit. In the IT world, it is a group of people who create business value through
close cooperation and coordination.

In Rugby, each player has a unique position; they play both roles in attack and defense, and
they work as a team to get the ball to the other side. It can be compared to a situation in IT,
where the degree of success of a scrum team depends on the different disciplines within the
team and how they work together and coordinate with each other.

The Rugby comparison originates from a 1986 article from the Harvard Business
Review, The New Product Development Game, where the authors Takeuchi and Nonaka
introduced the term scrum in the context of product development. They argued that it
would bring more speed and flexibility, and they based it on case studies done in several
industries, notably the automotive industries.

In the early 1990s, Ken Schwaber and Jeff Sutherland started using scrum techniques in
their companies, and eventually in 1995, they presented a paper describing the Scrum
framework at a software design conference.

Scrum sets out the following values:

Commitment: The members must fully commit themselves to the project; it is not
a part-time job.
Focus: embers should focus on what needs to be done in each sprints.
Openness (Transparency): People must keep each other well informed about
progress and possible problems.
Respect: Members must respect those with a different background and expertise
and trust each other's good intent.
Guts: Members must have the courage to say things, ask questions, and come up
with new solutions.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[213]

Scrum works with multidisciplinary teams who prefer to work in one room so that
consultation is easy. The team is supervised by a scrum master, who has a facilitating role.
The product owner is the customer or a client, or a representative thereof. He or she
specifies the desired results, usually in the form of user stories. These user stories are kept
in a list, the product backlog, or the work stock. The product owner sorts the work stock for
priority. The most important user stories are at the top.

In Scrum, you work in sprints or iterations. These usually last from about a week to a
month, with a duration of two weeks as the most common. Sprints are timeboxed. In other
words, it is certain in advance how long a Sprint will last for and when it will end. At the
beginning of a sprint, the user stories for that Sprint are determined and recorded in the
sprint backlog.

Sprints provide results that are as tangible as possible. This means that the software
development will provide usable code, including integration, tests, and documentation,
that is understandable for the customer or end user.

At the end of a sprint, a sprint review takes place, where the result is shown to the product
owner. In addition, an evaluation takes place within the team.

Crystal methods
A Crystal method is a lightweight method with characteristics such as emphasis on people
instead of processes and products, fast communication (preferably by working together in
one room), the quick delivery of products, frequent and automatic testing, and regular
evaluations.

Unlike some other software development processes, Crystal is not a software development
method, but a collection of methods and processes. This collection is called the Crystal
Family. Crystal was invented and described by Alistair Cockburn. Each member of the
Crystal Family is indicated with a color representing the weight of a method, where the
following applies: the darker the color, the heavier the method. The color of the method is
chosen on the basis of the size and severity of the project. The size is determined by the
number of people participating in the project, and the severity is determined by the risk
that choosing the method could cause systemic damage. The colors are, like real crystals,
sorted from light to dark. Crystal clear is the smallest and lightest, followed by yellow,
orange, orange web, red, maroon, blue, violet, and so on.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[214]

Although the Crystal methods differ from each other, they do have some similarities, which
is why they are also called a family. They have three common priorities: safety, efficiency,
and usability. Furthermore, they also have common characteristics, the three most
important of which are the frequent delivery of (intermediate) products, feedback on
improvements, and good communication.

We have already discussed a team-based approach to product development with certain
process steps, and now with Crystal methods, a lightweight Agile method that focuses on
people within the team itself. There are also more radical methods that focus not only on
people and process, but also on tooling and technical quality. We will discuss these
XP methods in the following section.

XP
One of the most important subcultures of the Agile movement is XP. The main founders of
XP are Kent Beck, Ken Auer, Ward Cunningham, Martin Fowler, and Ron Jeffries. They
developed XP during the Chrysler Comprehensive Compensation (C3) system project in
1996. It is very popular nowadays, and this is reflected in the culture of software
development but also in its ways of working and the toolset it uses. We believe GitLab is, in
many ways, the tool once imagined for XP. It is, in fact, so profound that we have decided
to dedicate an entire chapter to it to explain its relevance for GitLab.

XP takes its name from the fact that a number of proven development principles (so-called
best practices) are carried through to the extreme. The optimal power of XP stems from the
application of the 12 best practices of software development. The best practices are grouped
into four groups: fine feedback, continuous process, shared knowledge, and the well-being
of the developers.

Fine-scale feedback
One of the most important principles in XP is the usage of feedback mechanisms and trying
to keep the feedback loops as small as possible. This starts at the planning stage, because
feedback from a customer at this stage can already limit wasted time.

The fine-scale feedback group in XP includes four practices: planning game, pair
programming, test-driven development (TDD), and whole team. We will discuss the
feedback loop for each practice in the following sections.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[215]

Planning game
The planning takes place at the beginning of each iteration and consists of both release
planning and iteration planning.

Release planning determines which functionality will be realized in which release. Both the
developers and the users are present.

Release planning consists of the following three phases:

Exploration phase: Here, the users make a shortlist of the most important
requirements for the new system. This happens in the form of user stories.
Commitment phase: Here, it is decided which user stories will be included in the
next release and when this release will be.
Steering phase: Here, the plan can be modified, and new stories added and
others removed.

Iteration planning is when user stories included in the release schedule for an upcoming
Sprint are divided into tasks for the developers. No users are involved, only developers.

Iteration planning also consists of three phases; they are as follows:

Exploration phase: Here, the stories are translated into tasks, which are then
written on cards called task cards.
Commitment phase: Here, the time taken to realize the tasks is estimated and the
tasks are assigned to the developers (pairs).
Steering phase: Here, the tasks are carried out, and the result is compared with
the original time schedule of the user story.

The purpose of this kind of planning is to ensure that a product can be delivered. It is not so
much about delivering exact data as about delivering the product.

Release planning
During this part of the planning game, customers and developers try to find out what will
be included in the next release of the software and when this will take place. The focus is on
creating user stories.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[216]

This part of the game consists of the following three phases:

Exploration phase: This is the process of gathering requirements and estimating
the amount of time it will take to realize them. Activities in this phase includes
the following:

Writing a story (user story): Here, the users come up with a
problem or wish; during a consultation, the developers will try to
fully understand this problem. On this basis, a user story is
written. This is done by the users, indicating what they expect
from a system. It is important that developers do not interfere.
Estimating the user story (estimating a story): The developers
estimate how much time it will take to make this. The developers
can now also designate short examinations, called spikes, to
investigate parts of the problem or the solution direction. These
spikes are used to achieve better time estimates and are thrown
away as soon as the problem and/or the solution is clear to
everyone.
Splitting a user story: In this phase, the story must be completely
clear and all ambiguities must be cleared up before iterative
planning can be started. If the developers cannot give a time
estimate for the story due to lack of clarity, the story must be split.
If the users have described all their wishes, they can continue with
the concept of decision-making, which is known as the
commitment phase.

Commitment phase: In this phase, we will find out what the costs are, what the
benefits are, and what schedule consequences they have. We create four different
lists based on the way we sort the items, which are as follows:

Sorting by value: Users put the user stories in order of what they
consider important. They make the following three stacks:

Critical: Without these stories, the system cannot
work or has no value.
Important: User stories that are important to the
company.
Nice to have: User stories in which less important
characteristics are realized.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[217]

Sorting according to risk: Here, the developers give an estimate of
the risks and sort the story accordingly. All values for the user
story are added together, giving the user story a accumulated risk
value of low (0-1), medium (2-4), or high (5-6). The following is an
example of this:

Completeness (do we have all the details about the table?)

Full (0)
Incomplete (1)
Unknown (2)

Vulnerability (are changes likely?):

Low (0)
Medium (1)
High (2)

Difficulty (how difficult is it to realize?):

Simple (0)
Standard (1)
Difficult (2)

Determining the development speed (velocity): Here, the developers
determine at what speed they can execute a project and sort items
accordingly.
Scope: Here, it is determined which user stories will be realized in the
coming release. This is the final sort. On this basis, the release date is
determined. The sort should be according to the value for the users
(business value).

Steering phase: In this phase, the developers can steer the process together with
the users. In other words, they can still change something, whether that be an
individual user's story, or the importance of another particular story.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[218]

Iteration planning
Depending on the speed of the team, it can be determined how many story points the team
can do per iteration. Iterations can last from one to three weeks. The focus here is on
creating tasks and prioritizing them. The iterations also have the same phases as the earlier
release planning, as follows:

Exploration phase: During the research phase of iteration planning, the user
stories are divided into tasks, and how long a task will take is estimated. The
main activities in this phase include the following:

Translating the user story into tasks and writing them on task
cards.
Adding or splitting tasks; in other words, if the developer cannot
properly estimate how long a task will last because it is too big or
too small, something will need to be altered.
Estimating the task, where an estimation of a task's execution is
produced.

Commitment phase: In the assignment phase of iteration planning, the following
tasks are distributed among the developers:

A developer (programmer) accepts a task: Each developer takes a
task for which they then become responsible.
The developer gives a time schedule: Because the developer is now
responsible, they are now best able to give a time estimate.
The effective working time is determined, outlining the number of
hours that a developer or programmer can develop during an
iteration. (For example, in a 40-hour working week, in which five
hours of meetings are held, the effective working time becomes 35
hours.)
Balancing: Once all the tasks have been assigned, the number of
hours each developer has received is also compared to how many
hours they actually have available (this is also known as the load
factor). The tasks may then be redistributed to ensure that each
developer has roughly the same amount of work. If a developer
has too much work, something will have to shift.

Steering phase: The execution of tasks is done during the execution, or steering
phase, of iteration planning. There is a bit of a game element to this, but the
following steps are advised:

Taking a task card: Here, the developer gets a card with the
description of one of the tasks they have registered for.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[219]

Finding a partner: The developer looks for a partner to develop
the task with.
Designing the task: If necessary, in this stage, a (short) design will
be made.
Writing the unit test: Before any programming, all tests must be
ready. Preferably, these are automatic tests because they often have
to be done every time source code is checked in.
Writing the code: Here, the programmer or developer makes the
program.
Testing the program: The unit tests are performed.
Refactoring: In this step, the refactoring rules are applied and the
developers ensure their code meets the standards.
Doing functional and integration tests: After the unit test, all
possible other tests are run, such as integration tests, regression
tests, and so on. The code must be adjusted in this step until the
test succeeds.

Pair programming
XP states that, ultimately, everything revolves around code when software is crafted. So, if
it is a good thing for developers to review code together, software should always be
developed in pairs. In other words, pair programming can be defined by two people
working behind one computer. Pair programming is often considered one of the most
extreme and controversial aspects of XP because it is thought to be slower. However,
research has shown that peer review and code inspection are the most powerful weapons
against bugs—and these are much more powerful than systematic testing. These techniques
are only used sparsely and often drum up great resistance among the programmers
themselves, as well as managers who are afraid of an increase in working hours.

By enforcing the rule that all software development is carried out in pairs, which also
change composition regularly, a collective sense of ownership arises, and peer review and
code inspection become a natural part of the software process. As a result, the system
ultimately delivered no longer consists of a collection of pieces of code tied together with
strings, which are poorly maintainable.

There is another advantage to this way of working: there are always at least two people
who fully understand every piece of code. The transference of knowledge to new
colleagues happens more naturally, and a continuous training on the job takes place.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[220]

Some of the benefits of pair programming include the following:

Better quality code: Activities such as reading code out loud and discussing the
thought process behind it helps others to understand its complexity, as well as
giving developers the opportunity to clarify any details and prevent irrevocable
choices from being made.
Better knowledge-sharing within a team: This is particularly useful when one of
the developers is not yet familiar with the software component cooperates with
someone who is.
Improved knowledge transfer: This is helped by developers automatically
learning new techniques and skills from experienced team members.
Less management overhead: This is aided by less individual control because
developers are working in teams of two or more.
Continued focus: Pair programming can be particularly helpful if one member of
the pair has their work interrupted for any reason.

So, are there any drawbacks to pair programming? Currently, it is not known exactly what
the costs and benefits of pair programming are, but initial research indicates that the
duration of a task increases by an average of 15% when a pair is working over an
individual. Whether that cost can be justified by higher code quality is debatable.

Test Driven Development
In Test Driven Development (TDD), testing is carried out before any programming. TDD
relies on the premise that if testing is good, the test code should be written before a line of
code (functionality) is.

Within XP, the writing of automatic unit tests occupies an important place, as writing unit
tests is done before an actual program is started. In TDD, the programmer makes one or
two tests, writes a piece of the program, makes an additional test case, reworks the
program until the new test passes, the designs a new test, and so on.

The advantage of this process is that the programmer is obliged to think about the
functionality and the exceptions that their program should take into account; they think
about what the program should do first and how the program will work second. In other
words, the tests capture the required functionality. It is therefore important that every
program only has enough functionality to make the test work. If all tests pass, the program
meets the previously-defined requirements, which are defined in the written and successful
unit tests.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[221]

When refactoring is required, the already-written unit tests are therefore a guarantee that
changes will not cause undesirable side effects in the operation of a program.

Should it be necessary to expand a program with new functionality, the first thing to do is
to start writing new unit tests that will define the new functionality to be written. This new
functionality is only realized when both the new and the old unit tests all succeed.

If a bug is found at a later stage during a functional test, writing a unit test that brings this
bug to light is the first port of call. A bug is therefore not a fault in the program, but rather
the result of an insufficient test.

To summarize, a software development project that is carried out using TDD does the
following:

Starts with one unit test that describes one feature of the program
Runs the test, which should ultimately fail because there is no code
Utilizes the minimum amount of code needed to make a test pass
Rewrites code to make it simpler
Repeats the process with more tests

Using this approach, the defect rate should go down after time, despite more time being
needed to get things started. Most teams report that once they have reached the end stages
of a project, the upfront testing cost is paid back and they work quicker in a project's final
phases. Code that is developed this way tends to be of higher quality than otherwise,
because for testing to work, you are forced to create code that is high in cohesion but low in
coupling. This keeps code that works on the same behavior and keeps properties in the
same class, as well as keeping modules as isolated as possible with clear interfaces to other
code.

This approach may sound quite simple, but in practice, it's quite hard, as developers may
forget to run tests. However, this problem can be easily fixed by setting up a project
template in a CI/CD environment with pre-configured tests, where tests are run at every
commit or push. If there are software engineers who are prone to overdo testing, it is a
good idea to agree on the number of tests, and how far they will go, beforehand. Don't test
constructs that are simple, such as accessors, for instance. On the other hand, be careful not
to over-simplify your tests, such as by creating tests but no assertions.

Team culture and agreements are very important for testing. If some team members aren't
on board, you will have conflicts. Also ensure that any test-templating, automation, or
suites are well supported, or your tests will break. (This also means that several people
should have knowledge of these products.)

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[222]

In essence, TDD can really improve the quality of your software. This is especially true if all
tests are automated via a continuous process, which we will discuss in the following
section.

Continuous processes
Continuous processes are a group of processes that are envisioned to run all the time with
no interruptions. There is also no need for batching, which often slows down XP as a
whole.

Continuous integration
If integration and integration tests are important, then code should be integrated as often as
possible – preferably, several times a day. This will prevent your team from working with
different copies locally and encourages them to work alongside each other. Any integration
problems will also become immediately visible. GitLab CI was created for this reason, and
was introduced in Chapter 1, Introducing the GitLab Architecture.

One of the key reasons CI is used is to prevent integration problems, which can occur if
developers work on their own for too long. Imagine the phenomenon of integration hell,
where at the last minute before release, a developer merges a big chunk of code that then
introduces conflicts.

Continuous integration has always been coupled with TDD in the XP world. Before
integration tests are run, it helps if code is thoroughly tested locally, preferably by using
unit tests. This way of testing code in your local environment helps uncover bugs before
they break other people's code. Note that you can also hide features that are not yet
complete by using feature toggles, which disable certain behaviors in code.

In some cases, build servers are used for other parts of the software Quality
Assurance (QA) process, including running additional security tests, measuring
performance, and even generating documentation. This behavior of shifting responsibilities
to the build server means that a lot of QA work that was traditionally done after
development work can instead be performed during development, with the bonus of
immediate feedback. This feedback loop is a big driver of the continuous process of
developing a software product, with the other being automation.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[223]

Automation has been further extended to create Continuous Delivery (CD), by making the
deployment of software part of the automation. To make this possible and run quickly
without issue, the code in the main trunk or branch should always be in a state so that it
can be deployed.

Every element of building a software product that can also be automated is eligible to be
part of the CI process, especially when it's particularly complex. Automating these stages is
one of the reasons CI/CD exists.

Refactoring
An important technique that differentiates XP from traditional development methods is
refactoring, which is the continuous rewriting of program code in small, precisely-
measured steps without affecting any visible functionality. In short, refactoring adds
nothing to the functionality, but simplifies the design. By regularly executing rewriting
steps, the overall effect is often astonishing.

In the meantime, some 70 rewrite rules have been discovered and documented. They carry
names such as introduce null object, replace temp with query, and replace conditional with
polymorphism. The preconditions for the successful application of refactoring is that there
are unit tests available that can be carried out automatically after every rewriting step to
ensure that the functionality has not changed. For example, for Smalltalk, there is now a
refactoring browser, with which rewriting rules can be applied automatically and without
the user having to worry too much about accuracy. Refactoring is often used in preparation
for implementing an extension or a change in functionality.

What is not meant with refactoring is the rewriting of code, bug-fixing, or changing the user
interface. Another danger of refactoring is that with the absence of good automated tests,
you may introduce regression errors.

After some time and experience using this technique, teams report considerable
improvements in the length of the code, less duplication, better coupling and cohesion, and
reduced cyclomatic complexity. For people new to your software, this makes it easier to
learn. For teams, it helps to think collectively about the general design of a project, and to
understand why certain decisions have been made. Usually, this also relies on the
introduction of certain reusable components and modules.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[224]

Short iterations
Software is regularly delivered to the customer for review in releases of limited size; if short
iteration strokes are good, you should therefore make them very short. We're talking
seconds, minutes, or hours, instead of weeks, months, and years. An average iteration of XP
takes two weeks, although according to extremeprogramming.org, it can vary from one to
three weeks.

The XP cycle consists of six phases: Exploration, Planning, Iterations to Release, Production,
Maintenance, and Death.

For Agile projects, an iteration is a specific time period during which development takes
place. This is called timeboxing. This period varies from project to project, but is usually
between one and four weeks, and is often defined for each project. A typical Agile
approach would be that a project consists of several iterations, with a short phase of
planning at the beginning and a closing phase at the end.

Iterations are mostly classified in work weeks that start on a Monday and end on a Friday.
After a while, the fixed term of the iteration makes it easier to assess how long a project will
take.

The iteration timebox in the Scrum methodology is called a Sprint, which is of course
a reference to Rugby. In XP, they are called weekly cycles. To most people, the word
iteration means repetition or even multiple repetitions; when used in the Agile context, it
means a repeated process.

Everybody owns the code
Note that every developer has equal rights to all aspects of a program's code. If the design
is good, make it part of everyone's daily work and improve the design step by step as soon
as the need arises. If architecture is so important, let everyone work on developing it. This
concept encourages everyone to contribute and take responsibility.

Shared understanding
The values in a group are mostly to do with perception. To be efficient and effective as a
group, you have to agree on certain points and share values and a common understanding.

http://www.extremeprogramming.org/

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[225]

Coding standards
To have a shared understanding you need to have some rules. There are coding standards
that are known and used by everyone. It really helps if source is consistently formatted.
That way everyone can read it and change it. Speak the same language in your code files. It
will also help in ensuring collective ownership of the codebase.

Simple design
If the code belongs to all developers in a group and everyone can change everything, it
should be possible for them to do so. Keep the design as simple as possible. XP works a lot
with the Keep It Short and Simple (KISS) principle. In other words, for a system to be easy
to change, the design should be as simple as possible. This is easier said than done,
however.

Traditional development methods have learned to think ahead and to always think about
functionality in a design that might have to be realized in the future, but these methods are
based on the assumption that costs for changes increase exponentially. This is why XP is
always trying to choose the simplest design to enable a functionality that must now be
realized. Ideally, any future expansions can be implemented with XP without the usual
extra costs. It also turns out that, all too often in the realization of a well thought-out design,
it does not reflect current requirements. This may happen either because certain details
have been overlooked during analysis and design, or because requirements have been
adjusted. With XP, design does not come first, but instead follows the code.

System metaphor
All team members, including developers and users or customers, share a common view on
the system (known as a metaphor); everyone must be able to describe the system in simple
words. The use of naming conventions should also contribute to this.

As we have discussed, the final takeaway is that when working with XP, the human
element is still the most important one. Is everyone talking about the same things, for
example? Do they all think the right priorities are set? Are they able to create software that
works and is understandable? This human element is also one of the driving forces behind
DevOps, the spillover of Agile thinking from software development to IT operations.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[226]

The DevOps movement
The term DevOps originated in Belgium around the end of the last decade, as a result of the
so-called DevOps days. These days were meant to bring together IT experts from both
development and management operations. A DevOps team was initially defined as a
multidisciplinary team that is fully responsible for the management and CD of a service.
Think of Amazon and Google as companies that use these kinds of teams; they release
dozens of changes every day.

This way of working is not yet standardized in big organizations—ITIL and PRINCE2 still
reign, and the Information Technology (IT) department is desperately trying to
deliver services with value. The way in which these services are provided is difficult to
maintain in the current situation where IT is still often seen as a cost item. This is caused by
the following:

The way of organizing organizations as a collection of independent silo's
A focus on creating process excess (too many rules set in stone)
Not defining clear Key Performance Indicators (KPIs) for measuring
performance.

The technologies in these silos are not compatible, whereas for a successful business-IT
alignment, one coherent chain is needed.

In addition, we are now seeing that customers are increasingly asking for the fast delivery
of a new functionality. This includes the quick resolution of incidents, short lines of
communication, and excellent quality requirements in their IT organization. Using the old
ways of organizing IT in an organization, processes, working methods, attitude, behavior,
and the required performance and results are not being sufficiently realized. A famous
quote attributed to Albert Einstein, that "the definition of insanity is doing the same thing over
and over again and expecting a different result", seems to increasingly apply to IT. It is time,
therefore, to fundamentally reconsider the setup of its organizations.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[227]

The following diagram illustrates the DevOps process:

History of the movement
The term DevOps still causes a lot of confusion in many places. As a movement, it is still
young, but it is largely based on common sense and experiences from the past. DevOps
teams appeared from an effort by companies to respond to changes in the market. The new
DevOps approach has been further developed with the aim of releasing higher-quality
software to customers faster and more frequently. A brief timeline of DevOps is as follows:

2007: During the migration of a data center for the Belgian government, Patrick
Debois is frustrated by the many conflicts between developers and system
administrators. This makes him think.
2008: At the Agile Conference in Toronto, software developer Andrew Shafer is
poised to give a session about Agile infrastructure. He decides to skip it because
he thought there were no attendees, but Debois was going to attend. Later,
Debois tracks down Shafer for a wide-ranging hallway conversation. Based on
their talk, they form the Agile Systems Administration Group.
2009: Two Flickr employees, John Allspaw and Paul Hammond, make the case to
test, build, and deploy responsive, fresh software in a bid to make operations and
development integrated and transparent. The first DevOps days take place in
Gent, Belgium. The conference takes place on October 30 with an impressive
collection of developers, system administrators, experts, and others. When the
conference ends, ongoing discussions move over to Twitter. To create a
memorable hashtag, Debois shortens the name to #DevOps.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[228]

2010: This is when the first ever DevOps days were organized in the US, carried
out with the help of John Willis (author of the famous book, The Phoenix Project),
along with early proponents of DevOps. The event soon becomes a global series
of conferences that are community-organized and are the major force driving the
DevOps community forward.
2011: The community of DevOps starts to use open source tools, such as Vagrant,
that can leverage technologies such as Chef and Puppet.
2012: The presentation development segment grows rapidly and becomes
focused on innovation. There are now various DevOps days that suddenly pop
up in a number of countries.
2014: Some of the biggest companies worldwide begin to use the DevOps method
in their organization, including LEGO and Nordstrom.

Today, DevOps is embraced across the world by a number of businesses; small, big, and
private businesses benefit from DevOps. DevOps can bring out the best results in the long-
run for any business and contribute to its success.

However, an organization is not able to switch over to DevOps quickly – changing
processes in an organization can have a major impact on its culture and needs time. A good
way to find out where you might be in this journey is to use a maturity model. When using
a model to represent reality, you can start to simplify the problem, instead of being
overloaded by the amount of solutions and tools that are available. If you know where you
are in the maturity model, you can determine where you want to be, and then plan your
journey.

Four Quadrant Model
The original maturity model is the Capability Maturity Model invented at Carnegie Mellon
University (CMU). It is a bit heavy to fully utilize, so simplified, more lightweight versions
of it are preferable. One such version is the Four Quadrant Model put forward by Brian
Dawson (https://techbeacon.com/devops/how-map-your-devops-journey). It is derived
from real-world DevOps transformations and offers a flexible way to assess maturity.

In the Four Quadrant Model, the values on the x axis consist of the different phases in the
cycle of software development. You can recognize the Software Development Life Cycle
(SDLC) in this:

Define
Plan
Code

https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[229]

Build
Integrate
Test
Release
Deploy
Operate

You see there is quite some overlap with the DevOps lifecycle phases that are proposed by
GitLab.

The cycle is divided into two halves: Agile Upstream (which includes a definition,
planning, coding, and building) and Agile Downstream (which includes integration,
testing, release, implementation, and methods such as continuous deployment and
continuous delivery).

On the y axis, there is the level of adoption of Agile and DevOps practices in an
organization. At the lower end, there is the team level, which moves on to the workgroup
level, and finally the enterprise level. In the original CMMI model, there are usually
different levels of maturity. The following figure illustrates the 4 Quadrant model:

Agile Upstream means that in a software life cycle, the development side of the product is
done with Agile methodologies. Agile Downstream is all about the deployment and
operational side of the SDLC.

Each team must strive to implement the Four Quadrant Model because it enables them to
innovate faster, increase productivity, respond to market changes, gain a competitive
advantage, and increase employee satisfaction and retention.

Another way of measuring maturity is to look at competencies. How strong are you in
certain aspects, for example?

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[230]

Four levels of competence
One way to test competence is by using the model mentioned by Mike Kavis' paper in
Forbes. He describes a model that is based on the Four stages of learning used by Noel Burch
in the 1970s.

The basic idea is that an individual goes through the following four stages while acquiring
a new skill:

Stage 1: unconscious incompetence: A person may not recognize that they need
a certain skill. The first step in changing or growing is to recognize this deficit
and to acknowledge the skill as is.
Stage 2: conscious incompetence: Gradually, it becomes apparent that a
necessary skill is lacking. This is learned by making mistakes.
Stage 3: conscious competence: After several iterations or tries, the person
acquires the skill and knowingly applies it. It won't succeed every time, and
doing so takes serious effort.
Stage 4: unconscious competence: The skill has become so natural or logical, that
it can be applied unconsciously. It can even by taught to others.

Davis claims that this model can be applied to organizations that are trying to grasp the
DevOps concept. It is not scientifically proven, but it can be valuable to make the following
comparison:

Stage 1: Nothing there: The organization initially seems averse to change. The
term DevOps is described as a hype and is not applicable. This usually means
that people don't really understand what DevOps is about. People are trapped in
the old silo thoughts and think that development should take over operations, or
vice versa.
Stage 2: Recognition: Finally, it has sunk in that something has to change. In this
stage, there will be mistakes. For instance, automation is introduced but the
development silo may still think it is responsible for writing everything. A new
silo (the DevOps silo) emerges, where developers are only creating automation
for operations. These developers are not knowledgeable in networking or
security and compliance or other operational issues. Similar problems occur if the
Operations department silo is converted to 'the' DevOps engineer. With limited
knowledge about engineering, untested and unmanageable shell scripts may
appear. However, at this stage, an organization is still learning and will
eventually proceed to the next stage if the inevitable growing pains are managed.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[231]

Stage 3: Coming of age: After learning from their mistake, the management of an
organization has taken up interest and recognized the added value of changing
people and processes. In the previous stage, the aim was to integrate the silos of
development and operations. Now that this has succeeded through trial and
error, cooperation has expanded to include legal departments, compliance, and
audit. The first signs of productivity are visible, with the creation of specialized
platforms, a framework, or a template for deploying standardized enterprise
applications from idea to production. Platforms begin to have everything baked
in, such as compliance and quality control.
Stage 4: 100% business driven: At this stage, multiple business units in an
organization deploy several times a day and are able to easily enhance the
process and share their knowledge via the platform. In the most optimal form,
the business unit is in complete control and has become a multi-disciplined team
that can advise and collaborate with dedicated platform specialists.

Of course, these models are quite theoretical, but they can help in the process of
organizational change. Fortunately, several tools have emerged to help organizations
bridge these gaps between the stages of maturity, which we'll discuss in the following
sections.

The toolchain
Although we have learned that DevOps is more than just tools, there are a number of tools
that are commonly used in the enterprise, such as the following:

A source code repository: Computer source code has become a very valuable
asset. It is usually stored in a repository with advanced version management
features. The repository manages the many versions of code that are checked in,
so developers can collaborate on each other's projects. This concept is not new
and has been around for 30 years, but is a big part of continuous integration
because it is where the source code is kept. Popular source code repository tools
include the following:

Git on the client
GitLab
GitHub
Subversion
TFS
CVS

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[232]

All of these repository tools are explained in detail in Chapter 4, Configuring
GitLab from the Terminal, Chapter 5, Importing Your Project from GitHub to GitLab,
Chapter 6, Migrating From CVS, and Chapter 7, Switching from SVN.

Build server: Building software used to be done on the individual developer's
workstation, but for the CI pipeline, a dedicated build server is used to compile
source code from the source code repository into executable artefacts. Modern
build servers do not just build, but also provide advance testing functions.
Popular tools include the following:

GitLab Runners: The build tool for GitLab.
Jenkins: A fork of the Hudson project and a CI platform. This
platform is primarily intended for the repeated execution and
monitoring of build tasks, as well as the automated building and
testing of applications. The many freely available plugins make it
very easy to further expand the functionality of Jenkins. This
software is only available as a distributed service to use on the
cloud and is tightly integrated with GitHub as a source code
repository.

Configuration management: For CI/CD, you need to control the environment
where it takes place. For this, there are configuration management tools that
describe and automate large parts of your infrastructure. Popular tools include
the following:

Puppet: Management software which can control large numbers of
servers. This concerns both the management of configuration files
(the settings of servers) and the management of the installed
software (packages). It uses a declarative language and has a steep
learning curve.
Chef: Also configuration management software, Chef supports
slightly fewer platforms than Puppet and is not a declarative
language. Chef uses pure Ruby code that indicates what you want
to do on your servers. You have more freedom to create your own
program data structures and functions. It is used by GitLab to
manage the omnibus package.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[233]

Virtual infrastructure: Infrastructure on which software runs has always been
virtual, and an operating system is already several layers of abstraction. In the
cloud, virtual infrastructure is an extra layer of abstraction that represents entire
machines (such as networks, nodes, and storage). There is also an orchestration
layer that manages the infrastructure. This provides easy up- and down-scaling
and can use all resources efficiently. The first real, large-scale virtual
infrastructure that became available as a service was Amazon Web Services. The
other major tech companies soon followed with Google Cloud and Microsoft
Azure. These infrastructures can be managed with their own orchestration tools,
but also have APIs that can be used by configuration management tools,
including the following:

Ansible
Puppet
Chef
Google Cloud

Governments often have special requirements regarding their data. This is called
data sovereignty and this is why specialist clouds have arisen for governments.
According to Garter, these clouds could be the next legacy system, after
government infrastructure was moved like-for-like to the cloud without being
decomposed into elastic, efficient, and cost-effective cloud components.

Not everyone is able to run their software and data on public clouds, even if they
have special agreements. If you run a private or hybrid cloud, for example, you
are essentially using abstractions that exist on the internet in your own data
center. Even without the elasticity of Amazon or Azure, it can be very beneficial
to apply cloud techniques yourself. The accompanying automation tools make
integration with existing systems easier, and a lot less people are needed for
managing the system. There are also private clouds; for example, VMware has
vCloud. It is quite easy to extend your existing VMware infrastructure to create
cloud-like environments.

Test automation: Testing is all about ensuring confidence in your product. When
the product reaches deployment time in your pipeline, it should be tested for
certain defects automatically before it has reached that point. There are several
tools available to perform all kinds of testing and integrate nicely with a lot of
other pipeline products; they include the following:

Selenium: Selenium is an application that allows you to automate
browsers. What you do with this depends on your goal. You can
automate repetitive administrative tasks, but Selenium is also used
for browser testing.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[234]

Cucumber: This is a test tool for Behavior-Driven Development
(BDD). The primary goal of BDD is to let people communicate,
and close the gap between technical and business people. You can
write tests in a human-readable format.
Apache JMeter: JMeter is an open source tool that performs load,
performance, and stress tests. It is a simple but effective
application where different types of scripts show exactly what the
result of the test is. These scripts are used for HTTP websites and
provide a simulated test environment. In addition to applications,
JMeter is also suitable for checking services on the web and various
databases.
You can also utilize GitLab Runners and write your own tests.

Pipeline orchestration: The pipeline refers to an automated number of steps to
get your code from inception to production after it has been checked into version
control. It's based on the idea of a manufacturing assembly line.

To manage things along the way in a CI/CD process, pipeline orchestration tools
were introduced. Some of these tools include:

Kubernetes: Kubernetes is, essentially, a platform for the roll-out and
management of containers on a large scale. Kubernetes, Greek for
helmsman or pilot, is the second name for the project, which originally
saw the light of day in the big halls of Google as Project Seven of Nine.
Project Seven of Nine was an external version of Borg, the task
scheduler that drives the services of Google, and the operation of
which was a Google secret for a long time.
Built as an extension to the Docker API, orchestration using Swarm
also became popular a couple of years ago. It can easily convert a loose
group of Docker containers in a managed virtual Docker engine. This
makes it very easy to start running container workloads at scale from
scratch.
Mesos/Marathon Apache: Mesos is a distributed kernel and is the
backbone of DC/OS. It abstracts CPU, memory, storage, and other
computer resolutions. It has APIs for resource management, planning
in data centers, and cloud environments. It can scale up to 10,000
nodes. It can therefore be extremely suitable for large production
clusters. It supports container orchestration with Marathon.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[235]

All of the aforementioned tools can be integrated with GitLab, and you can use GitLab for
all parts of a pipeline. You can use runners for testing, building, or deploying your product,
and you can utilize Kubernetes to orchestrate your workloads.

It's up to you which part of the pipeline is used in GitLab, but it can support you in all
stages of the DevOps life cycle, illustrated as follows:

We have now explained the basic setup of a CD pipeline in DevOps. GitLab offers close to
100% of all the stages, but can integrate with existing components as well.

Summary
This chapter was intended to provide more background on the origins and development of
GitLab. A tool does not arise from the void. In the 1990s, it became clear that in different
parts of the world, people came to the same conclusion: linear software development is not
the right approach for all projects. The solution to this problem has finally reached the
operations department after 10 years through DevOps. DevOps is a way of working and a
culture with accompanying tools for which GitLab has been built. In the next chapter, we
will see how GitLab can contribute to a better DevOps experience.

Questions
What is an SDLC?1.
How many participants were at the Agile Manifesto conference in Utah?2.
When was the waterfall model first mentioned?3.
Where was XP programming born?4.
What does MoSCoW mean?5.
Where and when did the first DevOps days take place?6.
What is Agile Upstream?7.
Name two configuration management tools.8.

GitLab Vision - the Whole Toolchain in One Application Chapter 9

[236]

Further reading
The Agile Maturity Model: https://info.thoughtworks.com/rs/thoughtworks2/
images/agile_maturity_model.pdf

DevOps maturity model: https://techbeacon.com/devops/how-map-your-devops-
journey

What is DevOps? http://radar.oreilly.com/2012/06/what-is-devops.html
The Agile Developer's Handbook, by Paul Flewelling: https://www.packtpub.com/
web-development/agile-developers-handbook

DevOps: Continuous Delivery, Integration, and Deployment with DevOps, by
Sricharan Vadapalli: https://www.packtpub.com/virtualization-and-cloud/
devops-continuous-delivery-integration-and-deployment-devops

Practical DevOpsm, by Joakim Verona: https://www.packtpub.com/in/
networking-and-servers/practical-devops

Wicked Problems, Righteous Solutions: A Catalogue of Modern Software Engineering
Paradigms, by DeGrace, Peter, and Stahl, Leslie Hulet, pp. 116, 117, 127. Reprinted
with permission of Prentice Hall, Englewood Cliffs, New Jersey, 1990.
Managing the development of large systems: Concepts and techniques, by W.
W. Royce In: 9th International Conference on Software Engineering. ACM. 1970.
p. 328-38.

https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
https://techbeacon.com/devops/how-map-your-devops-journey
http://radar.oreilly.com/2012/06/what-is-devops.html
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/web-development/agile-developers-handbook
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/virtualization-and-cloud/devops-continuous-delivery-integration-and-deployment-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops
https://www.packtpub.com/in/networking-and-servers/practical-devops

10
Create Your Product, Verify,

and Package it
In this chapter, we will try to compare the theory from the previous chapter with its
implementation in GitLab. As GitLab was born from a need to have a collaboration
platform with advanced features, it has grown organically to its current form. It was built
with agility in mind. We will present a use case where a small company wants to build a
software product, and we will use GitLab to evolve the idea into a product.

In this chapter, we will be covering following topics:

The GitLab workflow
Managing your ideas
Planning your feature
Creating it
Verifying your product
Packaging it for use

Technical requirements
To follow along with instructions in this chapter, please download the Git repository, along
with the examples, from GitHub: https://github.com/PacktPublishing/Mastering-
GitLab-12/tree/master/Chapter10.

You will need an Amazon account if you want to try the examples.

You also need AWS Command Line Interface (AWS
CLI): https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter10
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Create Your Product, Verify, and Package it Chapter 10

[238]

The GitLab workflow
Remember we introduced the DevOps pipeline as seen by GitLab in previous chapter. This
screenshot shows the various GitLab stages:

In this chapter, we will present several aspects of the entire pipeline as we try to use it in
our example project. The first phase is defined as Manage, and it sounds a bit weird as the
first part, but it is a continuous process spanning the entire pipeline, and GitLab provides
tools for it. The next stage will be Plan, in which you refine and prioritize and set timelines.
Then you start the Create phase where the tasks are executed to produce solutions. After
creating your product, you need to test different aspects of it in the Verify phase. After
verifying the product you will package it for deployment.

To explain the GitLab workflow in more detail, we will present a use case that is going to
be used throughout this chapter to demonstrate features in GitLab. For some features you
will need the most comprehensive GitLab license.

Imagine a company called Event Horizon. They want to build a solution for managing
events (for humans). For instance, you can use their solution to arrange invitations to a
party.

We introduce User1, who is a backend engineer, and is tasked with creating a backend for
this solution. Then we also have User2, who is currently product owner of this product.
They are both part of the IT department of the company. Then we have User3, who is part
of the marketing department.

User1 and User2 have both been made members of the IT group in GitLab. User3 is a
member of the marketing group, but has reporter access to IT.

Let's help them create this product (minimally) and demonstrate how they can use GitLab
for this.

Create Your Product, Verify, and Package it Chapter 10

[239]

In the meeting where both users and developers are present (the Release planning in XP, or
Sprint 0 when using Scrum) it is decided that these are following requirements:

We want to build an app to help organize events.1.
It needs to use email to communicate.2.
We are creating a list of invitees in advance.3.
Invitees can interactively indicate if they will attend.4.
Non-functional requirement: documentation is very important.5.
Non-functional requirement: we want to automate as much as possible.6.
Non-functional requirement: the tool used should enhance collaboration.7.
Non-functional requirement: the code used should be reviewed by at least one8.
other person.

At the end of the meeting, the requirements are prioritized and the developers talk without
the customers about the possibilities with GitLab as a product. This phase is the subject of
the next section.

DevOps phase – manage your ideas
Instead of creating big designs up front we have learned that iterative development is the
way to go. But even for projects using Agile methodologies there are some considerations
before your coding goes off to start. This stage in the DevOps life cycle is called Manage and
it comprises the whole life cycle. It is the beginning of an Agile iteration but also the end
and in between. You will manage your solution from the beginning and it never stops. An
import part of managing is knowing how you are doing. You can analyze this in GitLab, as
shown in the next section.

Cycle analytics
One of the most important metrics in developing software through an Agile method is the
cycle time. This Key Performance Indicator (KPI) is best described as the total time that has
elapsed from the time work has started until completion of the task. Or in IT, the time it
takes to get an idea implemented on production.

Create Your Product, Verify, and Package it Chapter 10

[240]

Before Agile project management, tools such as Microsoft Project were used to keep track of
time. Nowadays, guesstimates are not entered in a project anymore, but other things such as
risk and velocity are calculated in story points and they are used to plan some weeks ahead.

In GitLab, there is a place to measure cycle times: cycle analytics. It means you have to use
GitLab's project management features and it is available in all editions. The following
image is an example of cycle analytics for the GitLab CE project. Notice that it takes about a
month for an idea to go into production (which corresponds nicely with its actual release
cycle):

We can use cycle analytics later in the project to check how well GitLab is used and what
velocity the development team has.

Create Your Product, Verify, and Package it Chapter 10

[241]

DevOps phase – plan your feature
The next stage in the DevOps life cycle that GitLab is envisioning is Plan. For this phase, we
will explore all the steps needed to prepare for the coding and building of the solution. In
GitLab, there are several tools that can help you in this phase, regardless of which
development methodology you prefer (Agile or waterfall). Where to begin? We always
begin with creating an issue. We will discuss this in the next section:

Issues
What is an issue? Well, it can be many things. It could be a new business idea, a technical
problem, a cry for help. An issue is like starting a new discussion, and it is a way to express
your thinking. It should change along the way as other people get involved. It is the atomic,
basic, first thing in GitLab that everything else is derived from. It always a good idea to
start looking in the existing list of issues to see if your problem or wish is already part of an
existing issue.

GitLab, as a product, facilitates this discussion and offers ways to manage it and flows to
verify assumptions.

An issue has several attributes and concepts, which we will look at.

Content
Of course, an issue has content, so how is it structured? The issue has a title and a
description. It is also possible to insert tasks into the issue using markdown formatting.
What also counts as content are the accompanying comments and events/activities that are
linked and viewable through the issue. Within the content you can also insert quick actions,
which will be discussed later in this chapter.

Status of the issue
There are several states an issue can be in. Of course, it can be open or closed. Another
aspect of state is the confidentiality of the issue. If there is sensitive information, an issue
can be marked as confidential. The visibility of the issue is then limited to members of the
group who have at least reporter permissions.

Create Your Product, Verify, and Package it Chapter 10

[242]

Meta information
Every issue has an author, and that information is prominently displayed, along with the
current assignee. Other meta information consists of well-known project management
data, such as: milestones, due dates, and weight.

Let's try to make this clear, based on our example. The Event Horizon company is about to
start the first Scrum sprints. They want to use GitLab issues for project management.

User1 creates an issue in which he asks which technology we are going to use. That could
be an example of the first issue, as shown in the following screenshot:

You will see that there is a list with tasks defined.

Create Your Product, Verify, and Package it Chapter 10

[243]

User2 creates an issue regarding which documentation style to use for the project, as shown
in the following screenshot:

Both are valid questions to ask, and to start a discussion about, and we will see how this
continues when an issue evolves to the next level, a discussion. We will talk about this in
the next section.

Discussions
This a very important part of GitLab and is the next step in issue discovery. It is possible to
give feedback in the form of comments in the context of an issue, and also in the following:

Epics
Merge requests
Snippets
Commits
Commit diffs

Create Your Product, Verify, and Package it Chapter 10

[244]

It is also possible to create a threaded discussion or to transform a comment into one. You
can use markdown to format your text and use quick actions (as described in the Quick
actions section in this chapter). The default comment form is shown in the following
example:

If you have set up your GitLab for incoming email, you can respond to emails that are sent
as comment notification emails. Replying to those will create a new comment or discussion
item. In the following screenshot, you will find a discussion for an issue in the Event
Horizon web application:

Create Your Product, Verify, and Package it Chapter 10

[245]

As mentioned, it is also possible to add a discussion to an epic, which we will discuss later.
The following example is the screenshot for adding any discussion to an epic:

Using these discussions, the idea evolves, as does the understanding of it.

Create Your Product, Verify, and Package it Chapter 10

[246]

Milestones
Milestones can have different functions in a project, but are used in GitLab to indicate
where one stands in achieving a common goal for which issues and merge requests are
defined.

A milestone can be used to mark the beginning and the end of an Agile iteration or a sprint.
It's quite practical to just name the milestone after your sprint and then you can associate
issues to the milestone to add work.

At GitLab, they are used as one release cycle. For instance, when they go from release 11.8
to 11.9, all the work contained in that release will be represented by a milestone, and that
will be labeled 11.9. Each piece of work is represented in an issue, for instance, the
problems you need to solve, the conversation. All these issues work together towards one
large milestone.

For the Event Horizon project, there are three milestones defined: mvp 1, MVP3, and mvp2.
You can see them as follows:

Create Your Product, Verify, and Package it Chapter 10

[247]

If we open a milestone, it has the following characteristics:

Project milestones can only be linked to issues and merge requests in the project context.
You can view a list of milestones by going to Issues and then Milestones. Group
milestones can be linked with issues and merge requests on the group context, which
means you can link it to several projects that are part of the group. The list of those can be
found via the Issues and then Milestones links in the group. A general view of all
milestones is via the dashboard milestones list, or via the top navigation link, Milestones.

Create Your Product, Verify, and Package it Chapter 10

[248]

Epics
If you have GitLab EE, you can create epics. An epic is an extensive user story that still has
to be broken down into a set of smaller user stories. Usually, an epic describes a defined
piece of functionality or product property, but needs to be worked out in more detail before
the team can commit to this feature to be realized within one sprint. It's like a theme among
issues.

For big organizations that work with long-running project management programs, there is
also the option to have multi-level epics so that you can link and coordinate efforts. There is
a button (+) for it in the creation form of the epic.

Epics very much resemble issues in that you have the same editing functions and state. The
same formatting is applicable, and also the same quick actions. Maybe more importantly
for epics is the option to set due dates. Big projects that cover multiple business domains
are still more date driven, so we can imagine that these fields are more appropriate here
then in Agile-drive smaller projects.

From the epic, you can navigate to the linked issues. Also, when issues become too big and
are misrepresented epics, it is also possible to promote an issue to an epic.

For the Event Horizon project, the Product Owner User3 can create an epic to track the
progress of the two different projects and the issues that were created earlier. The following
screenshot shows the tracking progress for the projects:

Create Your Product, Verify, and Package it Chapter 10

[249]

The ability to use epics to group issues is necessary for keeping control over multiple
discussions and issues and projects that together work towards a solution.

Time tracking
With this feature, you can track how much time is being spent on issues and merge
requests. You can also track what was estimated, to see where you stand. It is part of GitLab
Core.

Create Your Product, Verify, and Package it Chapter 10

[250]

In the following screenshot, we can see that for an issue in the eventmanager project some
time has been estimated and spent:

In the body of an issue or merge request, and in comments, you can use quick actions to
enter the estimated and spent time for the issue. It can only be done by team members.

As seen in the following screenshot, you can use /estimate, followed by the unit of time.
If something will take five days and four hours, you would write /estimate 5d 4h in a
comment and, after that, press Comment. There can only be one estimate. You can also
remove it by using /remove_estimate. Here's the screenshot for reference:

Create Your Product, Verify, and Package it Chapter 10

[251]

In the same manner, you can record how much time has been spent on the issue. Members
of the project can use a quick /spent action in issues and merge requests to add time to a
total amount of time that is dedicated to an issue. For example, if two hours have been
spent, you issue /spent 2h, and it will show in the right panel. You can even remove time
spent by using negative numbers, for instance, /spend -1h. It won't go below 0, but will
reset the number. You can remove the total at once with /remote_time_spent.

Quick actions
A very handy feature in GitLab is the quick action. You can use a / with certain keywords
to trigger a command on issues, epics, merge requests, and commits, just like you can with
something like IRC chat. It is faster than using GitLab's web buttons or other controls.
Remember to put each command on a separate line, otherwise it will be parsed incorrectly.
Once they are parsed and executed, they will be removed from the text and nobody can see
them. There is, of course, an audit trail for the action executed.

Some samples of quick action are as follows:

/todo: Add a todo item from the comment
/done: Mark the todo as done
/close: Same as clicking the close button
/assign me or @someone else
/milestone %milestone: Set a milestone from the comment
/estimate <1w 3d 1h 10m>: Add a time estimation
/due <in 1 day>: Set a due date
/approve: Approve a merge request
Special quick action for commit messages: /tag v1.5 – Tag immediately a
commit with a message of choice

You can find all quick actions here: https://docs.gitlab.com/ee/user/
project/quick_actions.html

https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html
https://docs.gitlab.com/ee/user/project/quick_actions.html

Create Your Product, Verify, and Package it Chapter 10

[252]

The Project Issue board
Hidden in GitLab is a very nice project management feature. It is called the Project Issue
board. It can be used to implement a workflow by using visualization and can help to plan
and organize. It does not enforce one way of working. You have to organize and form your
own process. The boards are heavily dependent on labels, which are used to group issues
into lists.

If you go to the issues in the left navigation bar, you will find the option Boards. By default,
you get a board called Development that offers basic lanes such as Open, To Do, Doing,
and Closed. You can drag issues from lane to lane, indicating a change in state. For
instance, if an issue is done, you drag it to Closed. What happens is that the issue will
automatically get the label Closed. The following screenshot is an example of the project
issue board for the eventmanager project:

Create Your Product, Verify, and Package it Chapter 10

[253]

If you use GitLab Enterprise Edition, you can even have multiple issue boards, which can
mean several things:

A board can be shared by multiple teams: Group Issue boards.
Each team can have its own boards.
There are several views for projects, based on the scope of the board (milestone,
label, assignee and weight).

In the following screenshot, you can see how to create a new issue board by clicking on the
drop-down list saying Development. The default board is as follows:

Create Your Product, Verify, and Package it Chapter 10

[254]

When you click on Create new board you will be presented with a form to enter the name
of the new board, and the scope of the board. As with a label, it is just an attribute of an
issue that is used to group or aggregate. Let's choose to focus on milestones, and choose the
milestone MVP3, which is the minimum viable product coming out of sprint 3, which is
shown as follows:

Create Your Product, Verify, and Package it Chapter 10

[255]

After creation, you will be presented with an issue board including the issues that are
already assigned to a milestone. You can add issues (which then are coupled to the
milestone) with the Add Issues, which is shown in the following example:

Issue boards can function as information radiators for teams, it organizes issues in the way
you want and can be the subject of conversation for a team meeting.

Todos
A planning feature that is useful for the individual user is todo. Notification emails can pile
up in your inbox and get messy. An easy-to-use todo list, where you can view your tasks
sorted chronologically, is more focused. You will find them at the top of your navigation
bar, as follows:

Create Your Product, Verify, and Package it Chapter 10

[256]

When you have clicked the todo item, you will see a list of your todos with the option to
sort in different fields, as shown in the following example:

The following items could trigger a todo item:

An issue or merge request is assigned to you.
Being @mentioned in an issue, merge request, commit, or epic.
A failed job in one of your project CI/CD pipelines that has been marked not
allowed to fail.
When in an automatic pipeline, a merge request has a conflict.

DevOps phase – create it
Now that the project has been planned by creating issues, milestones and so on, it is time to
really start building. The next phase is Create, and GitLab provides several tools to help you
with this. Before you start building, you should make sure your project and group structure
is adequate for cooperation.

Projects and groups
The Event Horizon company has created two groups in GitLab. One group is called it and
another Marketing, as shown in the following screenshot:

Create Your Product, Verify, and Package it Chapter 10

[257]

We have created two separate projects in this context. The first one is called eventmanager,
which will hold the source code for the technical solution. You can create this project by
clicking on New Project if this is your first project, or click on the + icon in the top
navigation bar. The form to create a new project appears as follows:

The title of the project is eventmanager, and it will also appear in the URL. Take a good
look at the first part of the URL. This is the namespace that defaults to your own, but we
want this project to be in the it group. When you do that, you will notice that visibility is
automatically set to Private. This is because the group it has this as default.

Create Your Product, Verify, and Package it Chapter 10

[258]

Finally, we want this project to be accompanied by a README, so we need to choose to
automatically create it. Don't worry about what the project will look like, we will iterate on
it in the sprint.

Next, there is a second project called eventmanager-documentation, which will consist of
the documentation. We will use GitLab pages as a technology to build our user
documentation, and will choose Pages/Plain HTML as a template. This is shown in the
following screenshot:

Create Your Product, Verify, and Package it Chapter 10

[259]

You have to enter the Project name and Project slug and determine the visibility, as per the
following example:

If you click on projects you will see a list of two projects, as shown in the following
example:

Now we have our project and group structure ready, let's deal with other features that
promote cooperation.

Create Your Product, Verify, and Package it Chapter 10

[260]

Snippets
If you have worked with GitHub as a developer, you will have seen gists before. These are
little pieces of code that are usable for more than one goal. Often they could exist in several
code repositories, but they are available as gists to be reused. In GitLab this concept is
known as snippets. They are also used as examples to be discussed about, and so on. The
following example is a screenshot of a new snippet:

You can create snippets on a personal and project level. They can be made public, and there
is even an option to embed them in your own site, as shown in the following example:

Snippets can be used to share information, and using them could help to fulfill the
requirement for the platform to enhance collaboration.

Create Your Product, Verify, and Package it Chapter 10

[261]

Web IDE
As of GitLab 10.4, an enhanced web editor is available in GitLab that gives you the ability
to work on code online from the web. It offers many different features, including syntax
highlighting for the most common languages (PHP, Ruby, Shell, Python, Java, C) and
markup languages (XML, Markdown, and HTML). It is based on the Monaco editor which
you can find here: https://microsoft.github.io/monaco-editor/.

The Event Horizon company can also develop their software in the Web IDE. It, of course,
has support for Ruby, the language in which GitLab is mostly written.

In the following screenshot, you will see a file from the eventmanager project shown in the
web IDE:

Use of this tool would also enhance collaboration within Event Horizon.

Wiki
While we have created a separate project to provide documentation for our new software
product, GitLab also has a system for creating documentation by default. It is the Wiki
feature. Every project can easily enable this feature and you will then have a full-blown
wiki system available.

https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/

Create Your Product, Verify, and Package it Chapter 10

[262]

When you navigate to the Wiki through the left navigation bar in your project you will be
presented with the following screen:

If you create a new wiki, you will have to provide a title, the markup language used, and
then you can start adding content. As all the information is itself saved in an accompanying
Git repository, you can give the Commit message, because saving the page is creating a
new commit, as shown in the following screenshot:

Create Your Product, Verify, and Package it Chapter 10

[263]

Once created, you will see the page if you click on Wiki the next time. You can now create
more pages (even a page hierarchy if you want) and you can view the page history
(everything is versioned), as shown in the following example:

As you can see, Wiki is another feature that enhances collaboration between employees.

Protected branches
Because in Git it is possible to rewrite the entire history, GitLab has some mechanisms built
in to help mitigate this risk. You can use protected branches.

Protected branches have the following characteristics:

Before GitLab 11.9 you could not create a protected branch, only
Maintainers could (as of 11.9 Developers can create them).
Only Maintainers can push directly to a protected branch.
It is prohibited to use force push to a protected branch.
A protected branch cannot be deleted.

Create Your Product, Verify, and Package it Chapter 10

[264]

The only way to accept changes into a protected branch is to use merge requests. By
default, the master branch is a protected branch. The following example is the screenshot
for the protected branch:

Using a protected branch forces the use of code reviews, which is a requirement for the
eventmanager project.

Create Your Product, Verify, and Package it Chapter 10

[265]

Merge requests
So, the first version of eventmanager is almost ready. User1 has uploaded the latest changes
to branch MVP1, and is ready to create a merge request, as shown in the following
screenshot:

You can see the usage of quick actions by specifying Closes #2, #3 in the Description
field.

If you scroll down, you will see there is a section to view in which changes are introduced
to the master branch when you accept this merge request. It shows you how many changes
(6) are in our example, which files are changed, and what was changed. This is shown in
the following screenshot:

Create Your Product, Verify, and Package it Chapter 10

[266]

You can see User3 has been added as merge request approver, so he or she has to review
the changes, as shown in the following screenshot:

At the bottom of the screen, you can see which branches will be merged by this merge
request, and you can specify to delete the originating branch and/or squash the changes
(which means all changes are placed under one commit). This is shown in the following
example:

Create Your Product, Verify, and Package it Chapter 10

[267]

If User3 logs in, he will have a todo item for reviewing this merge request. As an example,
let's pretend User3 did a review and placed some comments. Let's look at part of the
index.erb file that is used in the eventmanager app to display a message saying that
someone is invited to an event. You can find the file in the code examples (https://
github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/
eventmanager). Here's the snippet of code that is picked by the reviewer as troublesome:

<p>You are invited to my event on December 15!</p>

User3 thinks the text You are invited to my event on December 15! is too specific.
Better to keep the text simple. He wants to suggest changing the text to You are invited
to my event!. He can add a suggestion using a quick action in markdown format in the
review comment, shown as follows:

After saving the comment, it looks like the following example:

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter09/eventmanager

Create Your Product, Verify, and Package it Chapter 10

[268]

User3 can finish his review now. User1 gets a notification that the merge request has been
reviewed. As he logs in and navigates to the review comment in the merge request, he will
discover the suggestion made by User3 with a button to apply the suggestion. The
comment will automatically be marked as resolved, as shown in the following example:

There is another comment by User3 about an entry in the attendees.yml file, shown in
the following code:

attendees:
 1:
 attending: ''
 email: someone@joustie.nl
 guid: 3e8cb800-51ec-4d5d-ac7a-ca37ebe06389
 name: Someone
 10:
 attending: 'NO'
 email: anotherone@joustie.nl
 guid: 1070d08f-c5ea-4247-95b1-ee7a3ca4a342
 name: Anotherone
 11:
 attending: 'NO'
 email: organiser@joustie.nl
 guid: c7d49f48-2f05-468d-9d2e-9609e8311f3c
 name: Organiser

There are no sample entries in attendees.yml with a YES, so Users3 suggests to change
one entry, as shown in the following screenshot:

Create Your Product, Verify, and Package it Chapter 10

[269]

Unfortunately, the customer who attends the demo at the end of the sprint was not
informed about the possibility to have an entry with No. There are also no real tests defined,
so User1 decides to push this comment as an issue for the next iteration of the product, as
shown in the following example:

Create Your Product, Verify, and Package it Chapter 10

[270]

When all discussion points are resolved, the merge request can be approved by User3, as
shown in the following screenshot:

The merge request feature is one of the most important reasons to use GitLab. You can
merge code or text in a project and cooperate on it.

DevOps phase – verify your product
The next phase in the DevOps life cycle is Verify. After building your product in the create
phase, you need to verify whether the product meets the requirements, is secure, and that
the quality in general is OK. This can all be done from within GitLab, by using the
continuous integration (CI) features. In the following sections, we will discuss a number of
components of the CI pipeline.

Create Your Product, Verify, and Package it Chapter 10

[271]

Code Quality reports
A nice feature that verifies code quality is a quality scan with CI/CD in GitLab. It makes use
of the open source and free Code Climate engines (https://codeclimate.com/). It is
embedded in a special Docker container that you can run within your GitLab runner. The
following code is an example of a .gitlab-ci.yml file that runs such a scan:

code_quality:
 image: docker:stable
 variables:
 DOCKER_DRIVER: overlay2
 allow_failure: true
 services:
 - docker:stable-dind
 script:
 - export SP_VERSION=$(echo "$CI_SERVER_VERSION" | sed
's/^\([0-9]*\)\.\([0-9]*\).*/\1-\2-stable/')
 - docker run
 --env SOURCE_CODE="$PWD"
 --volume "$PWD":/code
 --volume /var/run/docker.sock:/var/run/docker.sock
 "registry.gitlab.com/gitlab-org/security-products/codequality:$SP_VERSION"
/code
 artifacts:
 paths: [gl-code-quality-report.json]

When the jobs runs, the following logging is produced:

Running with gitlab-runner 11.7.0 (8bb608ff)
 on test-runner 97YoGmXL
...

After downloading the Docker container, it will start scanning the code. When the scanning
is complete a report is generated, as follows:

Uploading artifacts...
 gl-code-quality-report.json: found 1 matching files
 Uploading artifacts to coordinator... ok id=403
responseStatus=201 Created token=ngLDxFmF
 Job succeeded

https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/
https://codeclimate.com/

Create Your Product, Verify, and Package it Chapter 10

[272]

To view the report, download the artifact from the right, where there are links to it. The
following example shows the screenshot of the Job artifacts tab:

If you open the report with an editor to properly format it, it will show warnings or high or
critical findings. In the case of the eventmanager project, it found an unused variable, as
follows:

 "type": "Issue",
 "check_name": "Rubocop/Lint/UnusedBlockArgument",
 "description": "Unused block argument - `letter`. If it's
necessary, use `_` or `_letter` as an argument name to indicate that it
won't be used.",
 "categories": [
 "Style"
],
 "remediation_points": 50000,
 "location": {
 "path": "addUID.rb",
...

Please notice the "remediation_points": 50000, entry, which scores the finding. This
is different depending on the category finding, and can be used to compare total scores of
several scans, showing you the progress (or decline) of total quality.

There follows the block of code that was mentioned in the report:

 yaml_hash['attendees'].each do |letter, hash|
 p hash['name']
 p hash['email']
 p hash['attending']
 p hash['guid'] = SecureRandom.uuid if p hash['guid'] == nil
 end

Create Your Product, Verify, and Package it Chapter 10

[273]

You can see that in the first line there is a letter variable that is unused in the loop. If we
change letter to _letter the test should not report it as a warning anymore. Unused
variables are reported as a warning, you can suppress the warning with an underscore.

After the next run of the CI pipeline, the code quality scan will show that nothing was
found, the report will be empty.

You can use Code Quality reports as well in merge requests. It can run before merge and
you can compare remediation points. If there are likely to be critical findings, the job would
show as failed and in red. Now that we have verified that the application is of minimum
quality, we also want to verify if the app or website is OK for users. We can build review
versions on which to perform manual tests. This is our next section.

Review apps
The ultimate verification of your software product is to run all tests available and even
mimic production. In GitLab, this can be accomplished by using GitLab CI and GitLab
runners. For this to work, we will show an example using the eventmanager
documentation site. One of the requirements of the project is, of course, creating
documentation. We also created a separate project for it called eventmanager-
documentation. There are already web pages present, so let's automate the review process
(also one of the requirements: more automation). We are going to use an Amazon S3
bucket, which has been enabled to act as a webserver (you can find information about how
to configure them here: https://docs.aws.amazon.com/AmazonS3/latest/dev/
HowDoIWebsiteConfiguration.html).

https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html

Create Your Product, Verify, and Package it Chapter 10

[274]

To upload files to a S3 bucket, you need to authenticate with AWS. We can add secret
variables to the project that contain the credentials for AWS that are needed. You can find
them under Project | Settings | CI/CD | Environment variables, as shown in the following
screenshot:

Create Your Product, Verify, and Package it Chapter 10

[275]

When the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY variables are present, you
can execute aws-cli actions within GitLab CI/CD pipelines. The .gitlab-ci.yml file that
is used to deploy review apps is shown as follows:

 review apps:
 variables:
 S3_BUCKET_NAME: "joustie-1"
 image: python:latest
 environment: review
 script:
 - pip install awscli
 - aws s3 cp public/*.html s3://$S3_BUCKET_NAME/

The job is called review apps, as seen on the first line. Then, after that, a variable is
declared, the S3 bucket name. Next is the Docker image name that is used, which in this
case is an image with Python installed, so we can make use of the Python-based AWS CLI
utility that is installed in the script section. The last line contains the AWS CLI command to
copy a file to an S3 bucket, and it authenticates through the environment variables that we
have set.

After saving this file, the job will run, and if all goes well the HTML files are uploaded to
your bucket. If you follow the job log you will see the following.

First, it gets the container:1.

 Pulling docker image python:latest ...

Then it clones the repository:2.

Checking out 5625d409 as master...

It installs the Amazon CLI tool:

 $ pip install awscli
 Collecting awscli

Create Your Product, Verify, and Package it Chapter 10

[276]

Then it uploads the HTML files to the S3 bucket:3.

 $ aws s3 cp public/*.html s3://$S3_BUCKET_NAME/ Completed 617
Bytes/617 Bytes (2.1 KiB/s) with 1 file(s) remaining

When the job succeeds, the review environment will be created in GitLab. You can click on
the review link, as shown in the following example:

The next page will show a list of deployments in the review environment, as follows:

Create Your Product, Verify, and Package it Chapter 10

[277]

You can add the URL to the environment manually via edit, as follows:

After adding the URL to the environment, a button View deployment is available, as
follows:

If you click View deployment, you will be taken to the review app, as follows:

Create Your Product, Verify, and Package it Chapter 10

[278]

As of version 12.0 of GitLab, you will have a 'review button' next to 'view app' in the
pipeline view. It will then run the review app with a little form in the corner where you can
enter feedback. This input will be directly inserted into the issue.

So, to verify our project we have used Code Quality reports for the eventmanager code. We
learned that, initially, there was a warning that a variable was not used. We recommended
a fix and we ran the pipeline again, and the warning went.

We have demonstrated the use of a review app for the documentation project. Using this
review app we could verify that our initial requirements were met.

Both methods of automation implemented in your pipeline will greatly enhance your
Agility and DevOps capabilities. When you find errors, you can correct them and run the
pipeline again.

DevOps phase – package it for use
GitLab use Docker containers in their products for several purposes. To store container
images that were custom built for projects they also added Docker Container Registry
functionality to GitLab. By using this, you avoid having to store images in a remote location
that is maybe not safe enough. The container registry is the subject of the next section.

GitLab container registry
If you have the container registry enabled in GitLab, you can store Docker images that are
built in your CI/CD process. To enable this GitLab feature, you have to reconfigure your
GitLab instance and enable the registry functionality. When enabled, there will be a registry
menu item on the left for each project. If you click on it, you can view the contents of the
registry and instructions on how to use it, as shown in the following screenshot:

Create Your Product, Verify, and Package it Chapter 10

[279]

To store images in it for later use you have to edit your CI/CD configuration file in the root
of your project. Here's an example for the eventmanager project:

 build:
 image: docker:stable
 services:
 - docker:dind
 variables:
 DOCKER_HOST: tcp://docker:2375
 DOCKER_DRIVER: overlay2
 stage: build
 script:
 - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD
$CI_REGISTRY
 - docker build -t $CI_REGISTRY/it/eventmanager:latest .
 - docker push $CI_REGISTRY/it/eventmanager:latest

Create Your Product, Verify, and Package it Chapter 10

[280]

To summarize the file, it defines a build job. On the second line, the image to use is defined
as docker:stable. Because this image will build a docker container itself, it uses the
docker:dind service, which enables Docker in Docker functionality. Then, in the variables
section, there are two Docker variables defined: the Docker host to connect to (which is the
docker engine and it will build a container itself) and the Docker storage driver to use,
which is overlay2. The stage defined is build. Then, in the scripts section, the actual script is
given, which is really a basic Docker build, which is preceded by a login to the GitLab
Docker registry and followed by a push to that location. You can see variables that start
with $CI_REGISTRY. These are predefined variables available within GitLab to use and
make use of one time tokens.

When you save this file in the Web IDE, or push it to GitLab, the new pipeline will run
immediately. If it does not run, or says there is no runner available, check if your runner is
running in privileged mode. It needs this to run docker:dind.

After the image is finished, it is pushed to the GitLab registry with the latest tag. If this is
successful the job has succeeded and will be green, as shown in the following code:

$ docker push $CI_REGISTRY/it/eventmanager:latest
 The push refers to repository [registry.joustie.nl:5005/it/eventmanager]
 4fef5b78d890: Preparing
 2cf71380877f: Preparing
 ...
latest: digest:
sha256:346123861d2c745902e3e2aae3101c0fb3c17414467c74204119f17c2c0cfc9c
size: 1786
 Job succeeded

You can verify afterwards that the container is present in the registry by navigating to the
registry page of your project, as follows:

The registry is a secure way to store image artifacts from the CI/CD pipeline. In the DevOps
pipeline, it is part of the Package phase.

Create Your Product, Verify, and Package it Chapter 10

[281]

Summary
This chapter has tried to explain the GitLab flow using an example. Going through the first
phases of the model with the eventmanager example demonstrates why GitLab is a tool
that has sprung from the Agile revolution. From idea to implementation, every step can be
automated and is very customizable. In the next chapter, we will continue the pipeline by
looking at the Release and Configure phases.

Questions
What is the first phase of the DevOps cycle?1.
What is the most important unit of information in GitLab?2.
Why is it possible to turn comments into a discussion?3.
How can you give an estimate of four days for an issue?4.
How can you enforce a review mechanism in GitLab?5.
What kind of setting does a GitLab Runner need to run a Code Quality scan?6.
How can you enable the link to a deployed environment?7.
What do you need to do to enable the Registry link in a project?8.

Further reading
Comprehensive Ruby Programming by Jordan Hudgens: https://www.packtpub.
com/application-development/comprehensive-ruby-programming

Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker: https://www.
packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-
18x

AWS Automation Cookbook by Nikit Swaraj: https://www.packtpub.com/
virtualization-and-cloud/aws-automation-cookbook

Effective DevOps with AWS - Second Edition by Yogesh Raheja, Giuseppe Borgese, and
Nathaniel Felsen: https://www.packtpub.com/virtualization-and-cloud/
effective-devops-aws-second-edition

https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/application-development/comprehensive-ruby-programming
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition
https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition

11
The Release and Configure

Phase
In this chapter, we will take automation one step further than before. We will start by
showing you how to deploy your code to a staging environment after testing and
ultimately to production. This is a basic concept in the DevOps transition. We will finish
this chapter by explaining about Auto DevOps, a way to fully automate the deployment to
a Kubernetes cluster with integrated testing, security scanning, and even performance tests.
This is considered the optimal DevOps path by GitLab.

In this chapter, we will cover the following topics:

Continuous Deployment with deployment to Amazon Web Services
Auto DevOps with the use of a Kubernetes cluster in Google Cloud

Technical requirements
To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with the examples,
at https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter11.

Here, in the Chapter11 directory, you will find two applications that are used for the
examples in this chapter.

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter11

The Release and Configure Phase Chapter 11

[283]

To run certain automation scripts, you need an Amazon Web Services (AWS) account,
which can be created here: https://aws.amazon.com/free/.

For the instructions on how to create a cluster on the Google Kubernetes Engine (GKE),
you also need a Google account that you can use with Google Cloud, which you can create
here: https://cloud.google.com/products/search/apply/.

Continuous Deployment
Continuous Deployment, as explained in Chapter 9, GitLab Vision – The Whole Toolchain in
One Application, is an extension of Continuous Integration, aiming at minimizing cycle time;
that is, the time it takes to produce one new line of code by a development team and it
being deployed in the production environment. We will demonstrate this practice by
deploying the eventmanager Ruby code to Amazon Elastic Beanstalk, a service for
deploying and scaling web applications and services that have been developed with a
multitude of languages on different platforms.

There is also the option to create Ruby environments running a Puma web server. Let's log
in to the AWS web console (https://console.aws.amazon.com/console/) and click on the
Services tab. We can use the search option to find something within the huge range of
services that are available within the Amazon Cloud:

Type beanstalk into the Find Services widget and click the link it finds. Choose to create
a new environment:

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/
https://console.aws.amazon.com/console/

The Release and Configure Phase Chapter 11

[284]

The environment will deploy. When it's finished, you can view it in the dashboard:

The Release and Configure Phase Chapter 11

[285]

We are going to use CI/CD for our Continuous Deployment strategy. First, we will create
a .gitlab-ci.yml file with different stages (staging and production). The first part of this
file will define the variables to be used in the different stages. Here, we will define
a S3_BUCKET_NAME, which will be used to copy a deployment package to, a REGION to
specify where the service will be hosted, and finally an APPNAME, which corresponds to the
app name in Amazon Beanstalk:

 variables:
 S3_BUCKET_NAME: "elasticbeanstalk-eu-west-1-513361393569"
 REGION: "eu-west-1"
 APPNAME: "eventmanager"

We need to run our tests before we can advance to the next stage. In the following code, on
the second line, we specify a Docker image with Ruby installed to run our tests. In the
script section, run the default rspec tests:

 test:
 image: ruby:latest
 stage: test
 script: "bundle install;rspec"

This step will use the dpl tool (https://github.com/travis-ci/dpl) to interface with
Amazon Beanstalk and deploy to the staging environment:

 deploy_staging:
 stage: deploy
 script:
 - echo "Deploy to staging server"
 image: ruby:latest
 environment:
 name: staging
 url: http://staging.gbnfcg9st9.eu-west-1.elasticbeanstalk.com
 script:
 - echo "Deploying to staging"
 - gem install dpl
 - dpl --provider=elasticbeanstalk --access-key-id=$AWS_ACCESS_KEY_ID -
-secret-access-key=$AWS_SECRET_ACCESS_KEY --app=$APPNAME --
env=$CI_ENVIRONMENT_NAME --region=$REGION 13 --bucket_name=$S3_BUCKET_NAME
 only:
 - cd

https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl
https://github.com/travis-ci/dpl

The Release and Configure Phase Chapter 11

[286]

As you can see, we also need to get AWS credentials from somewhere ($AWS_ACCESS
variables). We can define these variables in the CI/CD environment variables section of the
settings of the eventmanager project. Now, we will use a feature called multiproject
pipelines, which has been available since GitLab 11.8. We are going to define a bridge job,
which will run the default pipeline in the eventmanager-documentation project:

deploy_documentation:
 stage: deploy
 variables:
 ENVIRONMENT: staging
 trigger: marketing/eventmanager-documentation

We also want to deploy to production. We created a separate Beanstalk instance for that
with an environment named production. But what if we want the last step to remain a
manual one? Then we need to define a control structure with when:manual, which means
that the step has to be manually initiated:

 deploy to production:
 stage: deploy
 environment: production
 when: manual
 image: ruby:latest
 script:
 - echo "Deploying to production"
 - gem install dpl
 - dpl --provider=elasticbeanstalk --access-key-id=$AWS_ACCESS_KEY_ID
--secret-access-key=$AWS_SECRET_ACCESS_KEY --app=$APPNAME --
env=$CI_ENVIRONMENT_NAME --region=$REGION 10 --bucket_name=$S3_BUCKET_NAME
 only:
 - cd

If you save this .gitlab-ci.yml file (and commit and push it), it will start a deployment.
If you click on the pipeline, you will get an overview of the jobs:

The Release and Configure Phase Chapter 11

[287]

In the preceding screenshot, you can see the stages. First, there's the test stages, which run
the rspec tests. The deploy_documentation job triggers a downstream pipeline
(eventmanager-documentation). Simultaneously, the deployment to the staging area
starts. Let's click on the job that starts:

By looking at the log file of the deployment to the staging area, you will find the following
code:

Running with gitlab-runner 11.9.2 (fa86510e)
 on Computer1 8REjeNy3
 Using Docker executor with image ruby:latest ...
 Pulling docker image ruby:latest ...
 Using docker image
sha256:f39c31795d257be1b6344eefdc324180a90ffb9b82a52d171982703dd26f549c for
ruby:latest ...
 Running on runner-8REjeNy3-project-3-concurrent-0 via Joosts-iMac-
Pro.fritz.box...
 Reinitialized existing Git repository in /builds/it/eventmanager/.git/
 Clean repository
 Fetching changes...
 fatal: remote origin already exists.
 Checking out 2dbf81c9 as cd...
 ...
 Skipping Git submodules setup
 $ echo "Deploying to staging"
 Deploying to staging

The Release and Configure Phase Chapter 11

[288]

The container installs the dpl dependency:

$ gem install dpl
 Successfully installed dpl-1.10.8
 1 gem installed

It then runs the deployment:

dpl --provider=elasticbeanstalk --access-key-id=$AWS_ACCESS_KEY_ID --
secret-access-key=$AWS_SECRET_ACCESS_KEY --app=$APPNAME --
env=$CI_ENVIRONMENT_NAME --region=$REGION --bucket_name=$S3_BUCKET_NAME

The dpl tool only runs if the Git repository is clean:

Preparing deploy
 Cleaning up git repository with `git stash --all`. If you need build
artifacts for deployment, set `deploy.skip_cleanup: true`. See
https://docs.travis-ci.com/user/deployment#Uploading-Files-and-skip_cleanup
.
 No local changes to save
 Deploying application
 No stash found.
 Job succeeded

There is no feedback about the upload except for the message stating that the application
has been deployed. You can verify this deployment by visiting the URL that is mentioned
in the Beanstalk environment that was created with the AWS console.

You can manually trigger the deploy job to production from the diagram, which is where
we saw the play button.

In GitLab, you can go to Operations | Environments | Production to view the
deployments. You can also roll back to an earlier release:

The Release and Configure Phase Chapter 11

[289]

In this section, we have showed you how to implement a deployment pipeline using Gitlab
CI and GitLab runners. You can create them just by using shell scripts and make them as
elaborate as you want by using multiproject pipelines and advanced syntax.

Auto DevOps
By default, Auto DevOps is turned on for every project. It is essentially a very elaborate
.gitlab-ci.yml file, which outlines the entire DevOps pipeline from the creating phase
onward.

It fits in the GitLab vision of providing one application to collaborate on the entire DevOps
life cycle of an application.

Configuring Auto DevOps
As we mentioned earlier, Auto DevOps is enabled by default for every project, but if you
want to disable it or configure it differently, you need to go into the settings, which you can
find by going to Settings | CI/CD | Auto DevOps:

As you can see, you need to configure a Kubernetes cluster to make this all work.

Another setting you can manage here is the deployment strategy. The default setting is that
the pipeline deploys up to production. This might not be the strategy you want for your
enterprise. You can use an incremental rollout as well.

The Release and Configure Phase Chapter 11

[290]

You should also note that a deployment pipelines is fully automated until the last step,
which is production. You can choose to leave that as a manual step.

To control the individual steps in the pipeline, you can view the Operations menu on the
left-hand side. The following is a screenshot of the available operations:

When the first piece of code is pushed to the repository, an Auto DevOps pipeline is
created. For the eventmanager project, this looks as follows:

Let's evaluate each step of the Auto DevOps pipeline from the preceding screenshot.

The Release and Configure Phase Chapter 11

[291]

Build step
The main idea is that, in the build phase, you prepare your code to run in a packaged way
– in a Docker container that you built using a Dockerfile – via Heroku build packs.

For the eventmanager app, user1 created the following Dockerfile:

 FROM ruby:2
 COPY . /var/www/ruby
 WORKDIR /var/www/ruby
 RUN bundle install
 CMD ["ruby","eventmanager.rb"]
 EXPOSE 5000/tcp

As you can see from the first line of the preceding code, it pulls a basic Ruby-enabled
Debian Linux image. It copies all the source code to a directory and goes there. Then, a
bundle install is run, which installs all the Ruby dependencies that are needed. Finally, it
starts the eventmanager app using the CMD command and exposes port 5000 to the
outside world. It has to expose port 5000 because the default Helm chart that is used to
deploy to Kubernetes assumes this port to run the application. It will be wired to port 80 or
443 after deployment.

The following code is for the log when the build phase is started:

Running with gitlab-runner 11.8.0 (4745a6f3)
 on runner-gitlab-runner-7fd79f558b-2wx96 _drEv8rS
 Using Kubernetes namespace: gitlab-managed-apps
 Using Kubernetes executor with image registry.gitlab.com/gitlab-
org/cluster-integration/auto-build-image/master:stable ...
 Waiting for pod gitlab-managed-apps/runner-drev8rs-project-3-
concurrent-0fvjtb to be running, status is Pending
 ...

It runs the Kubernetes executor and waits for a pod to be available.

When that happens, the build script is run. First, a login to the GitLab registry for this
project is attempted (we need to push the build there afterwards):

$ /build/build.sh
 Logging to GitLab Container Registry with CI credentials...
 WARNING! Using --password via the CLI is insecure. Use --password-stdin.
 Login Succeeded
 ...

The Release and Configure Phase Chapter 11

[292]

Then, the build of the Docker image will start:

Building Dockerfile-based application...
 Sending build context to Docker daemon 113.7kB

 Step 1/6 : FROM ruby:2-alpine
 2-alpine: Pulling from library/ruby
 ...

The built container image is pushed to the Docker registry for the eventmanager project:

Successfully built 5bd173d74f67
 Successfully tagged
...
 Job succeeded

When the Docker container image is stored in the registry, the subsequent phases will use
the image and pull it. This concludes the build step. The next step is to run the code quality
scan.

Code quality scan
In this phase of the pipeline, a GitLab runner is used to scan your code for quality. You can
find more information and an example of this in Chapter 10, Create Your Product, Verifying
It, and Packaging It.

Container scanning
The next phase is still a part of the test stage. In this stage, a container instance is
instantiated from your image and is scanned for vulnerabilities using clair (https://
github.com/coreos/clair).

It will log in to the eventmanager Docker registry:

Running with gitlab-runner 11.8.0 (4745a6f3)
...
 $ container_scanning
 Logging to GitLab Container Registry with CI credentials...
 ...

https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair

The Release and Configure Phase Chapter 11

[293]

Then, it will try to get a container with the scan tool in it:

Unable to find image 'arminc/clair-db:latest' locally
 latest: Pulling from arminc/clair-db
 ...

When the container is running, it will start the scan:

 2019/04/28 14:08:08 [0;32m[INFO] > Start clair-scanner
 2019/04/28 14:08:37 [0;32m[INFO] > Server listening on port 9279
 2019/04/28 14:08:37 [0;32m[INFO] > Analyzing
9cab74319993fe94abc345fa8933c789f4482b9644f9cb1d9758d31575ed1367
---+
 | STATUS | CVE SEVERITY | PACKAGE NAME | PACKAGE VERSION | CVE DESCRIPTION
|
 | Unapproved | High CVE-2018-6551 | glibc | 2.24-11+deb9u4 | The malloc
implementation in the GNU C Library (aka |
...

The default Ruby images uses a Debian image, which apparently has a lot of open
vulnerabilities.

If you switch the basic image your Dockerfile uses to ruby:2-alpine, you will have a
more basic Linux container, which should not give all of these errors. You will have to
restart the pipeline (click retry in the list):

Waiting for clair daemon to start
...
contains NO unapproved vulnerabilities

When no vulnerabilities are found, the report is uploaded as an artifact and the job will
succeed:

Uploading artifacts...
 gl-container-scanning-report.json: found 1 matching files
 ..
 Job succeeded

The created Docker image is now scanned for known vulnerabilities. When you want to
whitelist anything that's found, you can add them to a file called clair-
whitelist.yml and add it to your repository.

The Release and Configure Phase Chapter 11

[294]

Dependency scanning
This part of the pipeline scans your code for known security vulnerabilities in dependencies
of your software. An example would be if you rely on third-party libraries that have known
security issues. This will be explained in detail in the next chapter.

When this scan is complete, you will know whether the dependencies you use in your code
are safe or not. It is also useful to know which licenses are used by dependencies because
this can have a lot of consequences. We will explain this in the next section.

License management
An issue that's often overlooked by organizations is how to manage your intellectual
property rights (IP). There are different open source licenses around; for example, there
ones that are classified as permissive such as X11, Apache, and the BSD licenses. You also
have the copyleft kind, such as the GPL, which are more restrictive and could make you
share your derivative works. By using the license scanner, you ensure that you're not using
dependencies that have a negative impact on your intellectual property rights.

You will see the following output when the jobs runs:

Running with gitlab-runner 11.8.0 (4745a6f3)
 on runner-gitlab-runner-7fd79f558b-2wx96 _drEv8rS
 Using Kubernetes namespace: gitlab-managed-apps
 Using Kubernetes executor with image registry.gitlab.com/gitlab-
org/security-products/license-management:$CI_SERVER_VERSION_MAJOR-
$CI_SERVER_VERSION_MINOR-stable ...

This scan is run from a container, but that runs code and parses your project:

$ license_management
 mesg: ttyname failed: Inappropriate ioctl for device
 Added development to the ignored groups
 Added test to the ignored groups
 Fetching gem metadata from https://rubygems.org/.........

This will analyze and upload a report artifact:

Running license_finder in /it/eventmanager
 LicenseFinder::Bundler: is active
 Uploading artifacts...
 gl-license-management-report.json: found 1 matching files
 Uploading artifacts to coordinator... ok id=478
responseStatus=201 Created token=HjYg-s1y
 Job succeeded

The Release and Configure Phase Chapter 11

[295]

The result is also viewable from the merge request widget.

As you can see, the inclusion of a license check in the pipeline can be very useful. Is it better
to know as early as possible whether you are using dependencies that affect the way you
can distribute your software. In the same parallel step of the pipeline, static security tests
are conducted.

Static application security testing (sast)
This part of the pipeline scans your code for known security issues, and is known as a static
application security test. This will be explained in more detail in the next chapter. The final
parallel step in the test stage is running the actual tests that are defined by your code.

The final test step
In this pipeline, a specific container is started that clones the source code:

Running with gitlab-runner 11.8.0 (4745a6f3)
 on runner-gitlab-runner-7fd79f558b-2wx96 _drEv8rS
 Using Kubernetes namespace: gitlab-managed-apps
 Using Kubernetes executor with image gliderlabs/herokuish:latest ...

It will try to detect the language that's used. In our case, it finds a Ruby application, which
is correct:

$ setup_test_db
 $ cp -R . /tmp/app
 $ /bin/herokuish buildpack test
 -----> Ruby app detected
 -----> Setting up Test for Ruby/Rack
 -----> Using Ruby version: ruby-2.5.3
 -----> Installing dependencies using bundler 1.15.2

After installing the necessary dependencies, it will run the rake test task:

-----> Running test: bundle exec rspec
 ...
 Finished in 0.03197 seconds (files took 0.22688 seconds to load)
 3 examples, 0 failures

In our case, no errors were detected. You can check which tests are run in your tests
folder.

The Release and Configure Phase Chapter 11

[296]

Of course, the tests that are run are written by yourself, so you determine how much value
they have. When they are finished, the next stage is to deploy to production, which is
covered in the next section.

Production
The default Auto DevOps pipeline will deploy your code to production after it finishes the
test stage. Various environment variables are available that you can set that will control the
autoscaling of your replica pods. The heavy lifting in this phase is performed by the auto-
deploy-app Helm chart. You can also provide your own chart by adding it to a .chart
directory in your project or by setting AUTO_DEVOPS_CHART combined with the
AUTO_DEVOPS_CHART_REPOSITORY environment variable with the URL to your custom
chart. It will create several things:

A deploy token
A Prometheus monitoring instance that's wired for your application

Let's run the following code through the log file:

Running with gitlab-runner 11.8.0 (4745a6f3)
 on runner-gitlab-runner-7fd79f558b-2wx96 _drEv8rS
 Using Kubernetes namespace: gitlab-managed-apps
 Using Kubernetes executor with image alpine:latest ...

This checks the artifacts of the previous jobs and performs a check on the Kubernetes
domain. It will install dependencies for minimal Helm execution:

Checking out 08222854 as master...
 Skipping Git submodules setup
 Downloading artifacts for code_quality (477)...
 Downloading artifacts from coordinator... ok id=477
responseStatus=200 OK token=zxQGxCFW
 Downloading artifacts for license_management (478)...
 Downloading artifacts from coordinator... ok id=478
responseStatus=200 OK token=HjYg-s1y
 Downloading artifacts for container_scanning (481)...
 Downloading artifacts from coordinator... ok id=481
responseStatus=200 OK token=hErz9aWj
 $ # Auto DevOps variables and functions # collapsed multi-line command
 $ check_kube_domain
 $ install_dependencies

The Release and Configure Phase Chapter 11

[297]

The next step is to download the required chart (auto-deploy-app chart or custom):

$ download_chart

Next, we need to ensure that a namespace is defined (which is usually the Kubernetes
cluster name you used):

$ ensure_namespace

Now, it's time to initialize tiller (the Helm server):

 initialize_tiller

Here, a secret to access the registry is created:

 create_secret

Finally, the deployment can start:

 $ deploy secret "production-secret"
deleted secret/production-secret replaced
Deploying new release...
Release "production" has been upgraded.
Happy Helming! ...

After the deployment, you will see feedback about the URL where the application is
running. The name is created by appending the namespace to the project name and the
domain wildcard where the cluster is running:

NOTES:
 Application should be accessible at:
http://it-eventmanager.kubernetes.joustie.nl
 Waiting for deployment "production" rollout to finish: 0 of 1 updated
replicas are available...
 deployment "production" successfully rolled out
 $ delete canary
 $ delete rollout
 $ persist_environment_url
 Uploading artifacts...
 environment_url.txt: found 1 matching files
 Uploading artifacts to coordinator... ok id=482
responseStatus=201 Created token=koT8yujj
 Job succeeded

The Release and Configure Phase Chapter 11

[298]

If you have configured kubectl to use the context of your GKE cluster, on the command
line, you can verify whether your deployments took place:

Joosts-iMac-Pro:Part3 joostevertse$ kubectl get pods --all-namespaces

The list of pods should show you the pods that were started:

NAME READY STATUS
RESTARTS AGE
 eventmanager production-6b9db68f6f-hrwzv
1/1 Running 0 11h
 eventmanager production-postgres-5b5cf56747-xngbk
1/1 Running 0 11h

By default, a postgres instance is started as well, and you can fine-tune your installation
to use it if you need it. You can find more information about that here: https://docs.
gitlab.com/ee/topics/autodevops/#postgresql-database-support. There are also other
pods in the list, and they are all part of the deployment:

certmanager-cert-manager-6c8cd9f9bf-8kbf8 1/1 Running
0 11h
 ingress-nginx-ingress-controller-ff666c548-n2s84 1/1 Running
0 11h
 ingress-nginx-ingress-default-backend-677b99f864-bnk8c 1/1 Running
0 11h
 runner-gitlab-runner-7fd79f558b-2wx96 1/1 Running
0 11h
 tiller-deploy-6586b57bcb-t6zql 1/1 Running
0 11h

The eventmanager application can be viewed by going
to http://it-eventmanager.kubernetes.joustie.nl:

Now, we have a running application that is being tested and monitored. The next and final
step is to run a performance check on the production environment. Again, we can use our
Kubernetes cluster to spawn a test container for it and run performance tests on it, which is
the subject of the next section.

https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support
https://docs.gitlab.com/ee/topics/autodevops/#postgresql-database-support

The Release and Configure Phase Chapter 11

[299]

Performance
In the log file for the performance job, you can see that Kubernetes is again used to spawn
an instance to use:

Running with gitlab-runner 11.8.0 (4745a6f3)
 on runner-gitlab-runner-7fd79f558b-2wx96 _drEv8rS
 Using Kubernetes namespace: gitlab-managed-apps

The job connects to GitLab.com and verifies the version of the image it should pull. It uses
the sitespeed.io container to do this (https://hub.docker.com/r/sitespeedio/
sitespeed.io/):

$ performance
 Connecting to gitlab.com (35.231.145.151:443)
 index.js 100% |********************************| 1614
0:00:00 ETA

 Unable to find image 'sitespeedio/sitespeed.io:6.3.1' locally
 6.3.1: Pulling from sitespeedio/sitespeed.io
 ...

Inside the container, it tries to measure browser performance with Chrome and Firefox:

Google Chrome 63.0.3239.132
 Mozilla Firefox 54.0.1
 [2019-04-25 21:42:41] INFO: Versions OS: linux 4.14.91+ nodejs: v8.9.4
sitespeed.io: 6.3.1 browsertime: 2.1.4 coach: 1.2.0

It will do a subsequent number of runs:

[2019-04-25 21:42:41] INFO: Starting chrome for analysing
http://it-eventmanager.kubernetes.joustie.nl 3 time(s)
 [2019-04-25 21:42:41] INFO: Testing url
http://it-eventmanager.kubernetes.joustie.nl run 1
 [2019-04-25 21:42:51] INFO: Testing url
http://it-eventmanager.kubernetes.joustie.nl run 2
 [2019-04-25 21:43:00] INFO: Testing url
http://it-eventmanager.kubernetes.joustie.nl run 3
 [2019-04-25 21:43:09] INFO: 2 requests, 586 bytes, backEndTime: 39ms
(±1.87ms), firstPaint: 119ms (±2.43ms), firstVisualChange: 0ms (±0.00ms),
DOMContentLoaded: 103ms (±3.06ms), Load: 104ms (±3.06ms), speedIndex: 0
(±0.00), visualComplete85: 0ms (±0.00ms), lastVisualChange: 0ms (±0.00ms),
rumSpeedIndex: 119 (±2.25) (3 runs)
 [2019-04-25 21:43:13] INFO: HTML stored in /sitespeed.io/sitespeed-results
 [2019-04-25 21:43:13] INFO: Finished analyzing
http://it-eventmanager.kubernetes.joustie.nl
 ...

https://about.gitlab.com/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/
https://hub.docker.com/r/sitespeedio/sitespeed.io/

The Release and Configure Phase Chapter 11

[300]

The results will be saved as a HTML report artifact, as well as a JSON file:

Uploading artifacts...
 performance.json: found 1 matching files
 sitespeed-results/: found 64 matching files
 Uploading artifacts to coordinator... ok id=483
responseStatus=201 Created token=w-R8qzFw
 Job succeeded

The following code is a part of the JSON file:

[
 {
 "subject": "/",
 "metrics": [
 {
 "name": "Transfer Size (KB)",
 "value": "0.6",
 "desiredSize": "smaller"
 ...

A nice HTML report is available too, which is part of the artifacts.

Auto DevOps is a very handy concept. It can give you a complete pipeline if your
application stays close to standards and is not very complex. If you need more
customization, you can use the template and fine-tune it to your needs.

Summary
This chapter demonstrated the potential of GitLab and the role it plays in the operations
phase of a software product. You can develop your solution, test it, and eventually run it in
an environment. Along the way, you can automate as much as possible. If you use the Auto
DevOps feature, you will reach the full potential of the DevOps concept, which is currently
a sought-after skill.

In the next chapter, we will look at the monitor and secure phases, which are the final
phases in the DevOps pipeline.

The Release and Configure Phase Chapter 11

[301]

Questions
In which file do you define your deployments?1.
What is the dpl tool?2.
What is the GitLab vision for Auto DevOps?3.
Where are the build artifacts stored at the end of the build phase (using4.
Dockerfile)?
What is the name of the container scanner that's used in Auto DevOps?5.
What is the name of the deployment Helm chart that's used in Auto DevOps?6.
How many pods are deployed for a production deploy?7.
What is the name of the performance container?8.

Further reading
Advanced Infrastructure Penetration Testing by Chiheb Chebbi: https://www.
packtpub.com/networking-and-servers/advanced-infrastructure-
penetration-testing

Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker: https://www.
packtpub.com/in/networking-and-servers/learn-docker-fundamentals-
docker-18x

AWS Automation Cookbook by Nikit Swaraj: https://www.packtpub.com/
virtualization-and-cloud/aws-automation-cookbook

Hands-On Kubernetes on Azure by Gunther Lenz and Shivakumar
Gopalakrishnan: https://www.packtpub.com/virtualization-and-cloud/
hands-kubernetes-azure

https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/aws-automation-cookbook
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure

12
Monitoring with Prometheus

In this chapter, we will explore how to monitor using the Prometheus time series, and we
will also run some automated security tests. The built-in security tests in GitLab are only
available when running with a GitLab Ultimate license on-premises or with a Gold
subscription on http://gitlab.com.

In this chapter, we will cover following topics:

Setting up Prometheus
Customizing monitoring
The static analysis of security vulnerabilities
Dynamic Application Security Testing (DAST)
Dependency checking

Technical requirements
To be able to manage Omnibus installs, there is one central configuration file required,
called gitlab.rb. You need to create this file or copy an example. There is a template
available at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/
gitlab-config-template/gitlab.rb.template. This file is not updated after upgrades.
Throughout this chapter, we will quote and discuss elements of this file.

To follow along with the instructions in this chapter, please download the Git repository
with examples, available at
GitHub: https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chap
ter12.

You will also need to have Python installed to create the Python sample exporter.

http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter12

Monitoring with Prometheus Chapter 12

[303]

Setting up Prometheus
Prometheus is an open source monitoring system inspired by Borgmon, Google's
production monitoring system. Since it was introduced in 2012, the project has built up an
active community and has already been used by many companies. It is an example of a
TSDB, a time-series monitoring database. This means that time is a deliberate X-axis in all
of your measurements. Every new entry is an insert and not an update of a data-row.

This is best visualized in a table:

Time(x) Key Value
12.01.33 ping-latency 0.234556
12.03.33 ping-latency 0.223344

The two main advantages of this approach are as follows:

Scalability: These databases are tuned to ingest data and do so very efficiently.
Usability: They provide all kinds of tools and functions, for example, data
retention and continuous queries.

Whereas most monitoring systems focus on measuring external system behaviors through
health checks, Prometheus emphasizes measuring internal system behaviors by requesting
metrics from the software itself. With Prometheus, you can set up monitoring dynamically,
making it a valuable tool for gaining insight into distributed setups, such as software on a
Kubernetes cluster.

The Prometheus project provides client libraries that make it easier to export metrics from
software. These libraries enable you to integrate monitoring as part of your software. It
opens a port to metrics inside your application, so to speak.

You can also use functions and objects from client libraries to expose the metrics inside
your application.

Another method is to run separate smaller programs that gather data that will be scraped
by the Prometheus server. Some officially endorsed exporters are available in the
Prometheus group on GitHub: https://github.com/prometheus.

GitLab is packaged with both methods. When enabled, it can expose metrics from within
GitLab itself, but the omnibus package can also deliver extra exporter instances that are
able to monitor a number of components. The monitoring architecture is as follows (as you
can see, the functionality runs on the GitLab application server):

https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus
https://github.com/prometheus

Monitoring with Prometheus Chapter 12

[304]

You can see several exporters in the image; let's go through them:

The (GitLab) Metrics Exporter: GitLab has incorporated the client functions into
itself and can expose metrics if the setting is enabled. You can find this feature in
the Admin | Settings | Metrics and profiling | Metrics Prometheus, as shown
in the following screenshot:

Monitoring with Prometheus Chapter 12

[305]

This works by allowing you to view the exporters' output on http://{your
gitlab url}}/-/metrics?token=something. An example is given on the
Health Check page via Monitoring | Health check, as shown in the following
screenshot:

Make sure that you append the token to the request otherwise you won't see any
data. An example output shown when visiting the URL is as follows:

Monitoring with Prometheus Chapter 12

[306]

The Redis Exporter: This is an external program you can find at https://github.
com/oliver006/redis_exporter/blob/master/README.md#whats-exported. It is
a Go binary that exposes metrics about Redis, the in-memory database and cache
that GitLab uses for storing background job queues, and session state and UI
caching.

When used together with Grafana, dashboards can be quickly set up, as shown in
the following screenshot:

The Postgres Exporter: Again, this is a Go binary and external project available
at: https://github.com/wrouesnel/postgres_exporter.

The GitLab Monitor: This exporter is a bit different in that it is built-in with Ruby
and exposes metrics with the Sinatra web server gem. The project page
is https://gitlab.com/gitlab-org/gitlab-monitor.

When you query the GitLab Monitor, you can provide different parameters,
which represent the kind of metric you want to scrape; they include the following:

Database: Provides information about tables, rows, and CI
build
Git: Provides information about Git pulls
Process: Provides information about CPU, process count,
sidekiq stats, and more

https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor
https://gitlab.com/gitlab-org/gitlab-monitor

Monitoring with Prometheus Chapter 12

[307]

The Node Exporter: This is perhaps one of the best-known exporters for
Prometheus. It consists of a lot of basic metrics for an application node. Again,
this exporter is written in Go and is available at https://github.com/
prometheus/node_exporter.
To enable the built-in Prometheus server on the GitLab application server, edit
the /etc/gitlab/gitlab.rb file. Search for prometheus['enable'],
uncomment it, and set it to true. There are several other options, but just
enabling it will already deliver you a working instance.

The part of the gitlab.rb file you should change is as follows:

###
#############
 ## Prometheus
 ##! Docs:
https://docs.gitlab.com/ce/administration/monitoring/prometheus/
###
############
 prometheus['enable'] = true
 # prometheus['monitor_kubernetes'] = true
 # prometheus['username'] = 'gitlab-prometheus'
 # prometheus['uid'] = nil
 # prometheus['gid'] = nil

After changing gitlab.rb, you should run a reconfiguration to activate the
changes. You will see messages explaining that certain exporters and the
Prometheus server have been started.

You can navigate to the Prometheus console by going to the address configured in
prometheus['listen_address']. You will be presented with a query
interface. If you click the drop-down list, you should see a list of metrics that can
be queried, as shown in the following screenshot:

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter

Monitoring with Prometheus Chapter 12

[308]

Once you have chosen a metric, it will display all values it has recorded in the
database (including data that was actively scraped from Prometheus exporters).
In this case, the chose view mode was probably Console. You can also view the
data as a graph by clicking on Graph, as shown in the following screenshot:

Monitoring with Prometheus Chapter 12

[309]

Using an external Prometheus host
If you are not using the omnibus package to manage GitLab or insist on using an external
Prometheus server, the picture will be a bit different. You should be aware that the default
security model that Prometheus uses is rather simple; it assumes that anyone can view the
stored time series data, and the server provides no authentication, authorization, or
encryption. If you need these features, you should prepare a reverse proxy in front of the
Prometheus server to help. More information about this can be found at https://
prometheus.io/docs/operating/security/.

The monitoring architecture for this situation is shown in the following diagram (as you
can see, some functionality is running on a separate server):

https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/
https://prometheus.io/docs/operating/security/

Monitoring with Prometheus Chapter 12

[310]

Now we have to make sure we have an external Prometheus host configured that is ready
to scrape the data. As we've previously mentioned, Prometheus is a single Go binary. To
specify which configuration file to load, use the --config.file flag. This configuration
file has to have the YAML format. How a single Prometheus server monitors the GitLab
Metrics Exporter embedded in GitLab is shown in the following prometheus.yml
example:

 - job_name: 'git-metrics'
 params:
 token: [gitlab_health_check_access_token]
 metrics_path: /-/metrics
 scrape_interval: 5s
 scheme: https
 tls_config:
 insecure_skip_verify: true
 file_sd_configs:
 - files:
 - /etc/prometheus/sd/gitlab_metrics_exporter_sd.yml

The gitlab_metrics_exporter_sd.yml file contains the following code:

 - targets: ['gitlab.joustie.nl']
 labels:
 app: gitlab

If you put both files in /tmp, or elsewhere, and run Prometheus as a Docker container (as
seen in the following example), you should have an external Prometheus ready for action.
Of course, you can also install it from source and run it on a dedicated server somewhere
else if preferred.

 docker run -it --name my-prometheus \
 -v /tmp:/etc/prometheus \
 --publish 9090:9090 \
 prom/prometheus

You now know how Prometheus runs on the GitLab application server itself, as well as on a
separate server.

Monitoring with Prometheus Chapter 12

[311]

Enabling the external dashboard link
Since GitLab 12.0 it also possible to enable a link to an external dashboard from inside of
GitLab.

Go to Settings | Operations and navigate to External dashboard1.
Insert the location to your external dashboard and click on Save Changes:2.

Customizing monitoring
There are several ways to create custom monitoring scripts that will supply time series data
to your Prometheus server. As noted earlier in the Setting up Prometheus section, there are
many client libraries available, such as https://github.com/prometheus/client_python.

In the following screenshot, you can see that the preceding project is not very big but does
have stars on GitHub.

https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python
https://github.com/prometheus/client_python

Monitoring with Prometheus Chapter 12

[312]

To use this library, install it using pip (a Python package manager for modules) with the
following code:

 $ pip install prometheus_client
 Collecting prometheus_client
 matplotlib 1.3.1 requires nose, which is not installed.
 matplotlib 1.3.1 requires tornado, which is not installed.
 Installing collected packages: prometheus-client
 Successfully installed prometheus-client-0.6.0

You can also create a simple exporter by running the following code from a Python
interpreter or via a file:

 from prometheus_client import start_http_server, Summary
 import random
 import time
Create a metric to track time spent and requests made.
 REQUEST_TIME = Summary('request_processing_seconds', 'Time spent
processing request')
Decorate function with metric.
 @REQUEST_TIME.time()
 def process_request(t):
 """A dummy function that takes some time."""
 time.sleep(t)
if __name__ == '__main__':
 # Start up the server to expose the metrics.
 start_http_server(8000)
 # Generate some requests.
 while True:
 process_request(random.random())

The exporter will start on localhost, on port 8000, and the following page will appear
when called:

Monitoring with Prometheus Chapter 12

[313]

You can add this exporter to your Prometheus server by adding the following code to
prometheus.yml and restarting Prometheus with gitlab-ctl restart prometheus on
an omnibus-installed GitLab application server, or you can use service prometheus
restart on an externally-installed Prometheus:

job_name: 'python_gitlab'
Override the global default and scrape targets from this job every 5
seconds.
scrape_interval: 5s
static_configs:-
targets: ['localhost:8000']

You now have the option to modify your own Python application to report metrics, or you
can create Python code that gathers metrics from your system. For instance, you may want
to parse a log file for certain patterns and accumulate the relevant metrics.

The static analysis of security vulnerabilities
Static Application Security Testing (SAST) is used to analyze source code or binaries and
to detect holes or weak points in security. When automated, this contributes to making
your DevOps methodology resemble DevSecOps, where security testing and awareness is
part of the DevOps life cycle.

GitLab, in its Ultimate license model, provides automated testing as part of the
development of your application.

Currently, the following languages and frameworks are supported:

Language/Framework Scan tool
.NET Security Code Scan
C/C++ Flawfinder
Go gosec
Groovy (Gradle and Grail) find-sec-bugs
Java (Maven and Gradle) find-sec-bugs
JavaScript ESLint security plugin
Node.js NodeJsScan
PHP phpcs-security-audit
Python bandit
Ruby on Rails brakeman
Scala (sbt) find-sec-bugs
Typescript TSLint Config Security

Monitoring with Prometheus Chapter 12

[314]

First, you need GitLab Runner with a Docker-in-Docker executor.

This is a normal Docker executor, but it runs in privileged mode. This means it can run its
own Docker daemon and therefore run containers itself.

You enable this functionality by changing the GitLab Runner configuration file
(config.toml), making sure it has privileged = true. After changing this, restart the
runner as follows:

[[runners]]
executor = "docker"
[runners.docker]
privileged = true

Secondly, you need a specific .gitlab-ci.yml in your GitLab project folder to make the
actual coupling, as shown in the following snippet:

sast:
 image: docker:stable
 variables:
 DOCKER_DRIVER: overlay2
 allow_failure: true
 services:
 - docker:stable-dind
 script:
 - export SP_VERSION=$(echo "$CI_SERVER_VERSION" | sed
's/^\([0-9]*\)\.\([0-9]*\).*/\1-\2-stable/')
 - docker run
 --env SAST_CONFIDENCE_LEVEL="${SAST_CONFIDENCE_LEVEL:-3}"
 --volume "$PWD:/code"
 --volume /var/run/docker.sock:/var/run/docker.sock
 "registry.gitlab.com/gitlab-org/security-products/sast:$SP_VERSION"
/app/bin/run /code
 artifacts:
 reports:
 sast: gl-sast-report.json

As an example, we downloaded the following code from https://github.com/CSPF-
Founder/JavaVulnerableLab into our own project. We added .gitlab-ci.yml to run a
scan. When the code was pushed, the workflow started and prepared for the scan:

 [0KRunning with gitlab-runner 11.7.0 (8bb608ff)
 [0;m[0K on Joosts-MBP.fritz.box gGEycKK-
 [0;m[0KUsing Docker executor with image docker:stable ...
 [0;m[0KStarting service docker:stable-dind ...
 [0;m[0KPulling docker image docker:stable-dind ...
 [0;m[0KUsing docker image

https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab

Monitoring with Prometheus Chapter 12

[315]

sha256:5b626cc3459ad077146e8aac1fbe25f7099d71c6765efd6552b9209ca7ea4dc1 for
docker:stable-dind ...
 [0;m[0KWaiting for services to be up and running...
 [0;m[0KPulling docker image docker:stable ...
 [0;m[0KUsing docker image
sha256:73d492654a095a2f91078b2dfacd0cfe1a1fe25412fac54b4eb2f5a9609ad418 for
docker:stable ...
 [0;msection_start:1550847640:prepare_script
 [0KRunning on runner-gGEycKK--project-1-concurrent-0 via Joosts-
MBP.fritz.box...
 section_end:1550847642:prepare_script
 [0Ksection_start:1550847642:get_sources

In the next stage, the repository containing the code to be scanned is cloned, shown as
follows:

 [0K[32;1mCloning repository...[0;m
 Cloning into '/builds/mastering_gitlab/JavaVulnerableLab'...
 [32;1mChecking out 157b6e94 as master...[0;m
 [32;1mSkipping Git submodules setup[0;m
 section_end:1550847644:get_sources
 [0Ksection_start:1550847644:restore_cache
 [0Ksection_end:1550847646:restore_cache
 [0Ksection_start:1550847646:download_artifacts
 [0Ksection_end:1550847647:download_artifacts
 [0Ksection_start:1550847647:build_script
 [0K[32;1m$ export SP_VERSION=$(echo "$CI_SERVER_VERSION" | sed
's/^\([0-9]*\)\.\([0-9]*\).*/\1-\2-stable/')[0;m
 [32;1m$ docker run --env
SAST_CONFIDENCE_LEVEL="${SAST_CONFIDENCE_LEVEL:-3}" --volume "$PWD:/code" -
-volume /var/run/docker.sock:/var/run/docker.sock
"registry.gitlab.com/gitlab-org/security-products/sast:$SP_VERSION"
/app/bin/run /code[0;m

In the next step, the run tries to get a specific Docker image for the scan. It will not find that
locally and will instead try to get it from gitlab.org, as follows:

 Unable to find image 'registry.gitlab.com/gitlab-org/security-
products/sast:11-7-stable' locally
 11-7-stable: Pulling from gitlab-org/security-products/sast
 3f0edbe59eaa: Pulling fs layer
 3f0edbe59eaa: Download complete
 3f0edbe59eaa: Pull complete
 Digest:
sha256:d31cbb2bfd200b60543ef99fa03638c2335a52597e0966b7347f896dbe4e78e7
 Status: Downloaded newer image for registry.gitlab.com/gitlab-
org/security-products/sast:11-7-stable

Monitoring with Prometheus Chapter 12

[316]

After successfully downloading the image, it will start the scan, as follows:

 2019/02/22 15:00:52 Copy project directory to containers
 2019/02/22 15:00:52 [bandit] Detect project using plugin
 2019/02/22 15:00:52 [bandit] Project not compatible
 2019/02/22 15:00:52 [brakeman] Detect project using plugin
 2019/02/22 15:00:52 [brakeman] Project not compatible
 2019/02/22 15:00:52 [gosec] Detect project using plugin
 2019/02/22 15:00:52 [gosec] Project not compatible
 2019/02/22 15:00:52 [find-sec-bugs] Detect project using plugin
 2019/02/22 15:00:52 [find-sec-bugs] Project is compatible
 2019/02/22 15:00:52 [find-sec-bugs] Starting analyzer...

After 10 minutes, the results should be as follows:

 Downloaded from central:
https://repo.maven.apache.org/maven2/com/google/collections/google-collecti
ons/1.0/google-collections-1.0.jar (640 kB at 882 kB/s)
 [INFO] Changes detected - recompiling the module!
 [WARNING] File encoding has not been set, using platform encoding UTF-8,
i.e. build is platform dependent!
 [INFO] Compiling 15 source files to /tmp/app/target/classes
 [INFO] ---

 [INFO] BUILD SUCCESS
 [INFO] ---

 [INFO] Total time: 11.988 s
 [INFO] Finished at: 2019-02-22T15:24:25Z
 [INFO] ---

The scan will report on which plugin or module can be use (in other words, it checks
project compatibility), as follows:

 Warnings generated: 49
 2019/02/22 15:24:33 [find-sec-bugs-gradle] Detect project using plugin
 2019/02/22 15:24:33 [find-sec-bugs-gradle] Project not compatible
 2019/02/22 15:24:33 [find-sec-bugs-sbt] Detect project using plugin
 2019/02/22 15:24:33 [find-sec-bugs-sbt] Project not compatible
 2019/02/22 15:24:33 [find-sec-bugs-groovy] Detect project using plugin
 2019/02/22 15:24:33 [find-sec-bugs-groovy] Project not compatible
 2019/02/22 15:24:33 [flawfinder] Detect project using plugin
 2019/02/22 15:24:33 [flawfinder] Project not compatible
 2019/02/22 15:24:33 [phpcs-security-audit] Detect project using plugin
 2019/02/22 15:24:33 [phpcs-security-audit] Project not compatible
 2019/02/22 15:24:33 [security-code-scan] Detect project using plugin
 2019/02/22 15:24:33 [security-code-scan] Project not compatible

Monitoring with Prometheus Chapter 12

[317]

 2019/02/22 15:24:33 [nodejs-scan] Detect project using plugin
 2019/02/22 15:24:33 [nodejs-scan] Project not compatible

You should now see a report of the findings, as in the following example (which is not
entirely complete):

+--
------------+
 | Severity | Tool | Location |
 +---
-------------+
 | High | Find Security Bugs |
src/main/java/org/cysecurity/cspf/jvl/controller/LoginValidator.java:64 |
 | |
 | HTTP cookie formed from untrusted input |
 +---
-------------+
 | High | Find Security Bugs |
src/main/java/org/cysecurity/cspf/jvl/controller/AddPage.java:45 |
 | |
 | Relative path traversal in servlet |
 +---
-------------+

As you can see in the following snippet, a lot of security issues were discovered:

 Uploading artifacts...
 gl-sast-report.json: found 1 matching files
 Uploading artifacts to coordinator... ok id=4 responseStatus=201 Created
token=Sy_pRf1e
 Job succeeded

The scan finally finishes by uploading the report.

Essentially, SAST tries to analyze your code and applies plugins based on which code could
be scanned. It will look for security hazards in your code. The scan is done in a special
container delivered by GitLab. After scanning, a report is available.

Dynamic Application Security Testing
Dynamic Application Security Testing (DAST) runs PEN tests like scans of your
application.

Monitoring with Prometheus Chapter 12

[318]

The test uses OWASP ZAProxy (https://github.com/zaproxy/zaproxy) to scan a running
instance in your web application. It runs a passive scan, which means it only tries to
discover your application by exploring links, will not find links created dynamically, and
will not attack your application actively.

Before GitLab 12.0, this scan also used the Docker-in-Docker mechanism, but now it just
retrieves and runs a container and the test. This means the image is cached on GitLab
runners, and after retrieving the image for the first time, the security test will run faster.

As with SAST, you control how scanning happens through the .gitlab-ci.yml file, as
follows:

 dast:
 image: registry.gitlab.com/gitlab-org/security-products/zaproxy
 variables:
 website: "https://blog.joustie.nl"
 allow_failure: true
 script:
 - mkdir /zap/wrk/
 - /zap/zap-baseline.py -J gl-dast-report.json -t $website || true
 - cp /zap/wrk/gl-dast-report.json .
 artifacts:
 reports:
 dast: gl-dast-report.json

When you push code to the repository, the DAST scan will start preparing, as shown in the
following snippet. First, it will try to find the ZAProxy Docker container and pull it.

 Running with gitlab-runner 11.7.0 (8bb608ff)
 on host gGEycKK-
 Using Docker executor with image registry.gitlab.com/gitlab-org/security-
products/zaproxy ...
 Pulling docker image registry.gitlab.com/gitlab-org/security-
products/zaproxy ...
 Using docker image
sha256:cd12d3ce5fc66ef0c6b2cf0e6b745876b666aed7f9e859451eaef884b92cefa7 for
registry.gitlab.com/gitlab-org/security-products/zaproxy ...

https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy

Monitoring with Prometheus Chapter 12

[319]

The scan will start as follows:

 Running on runner-gGEycKK--project-2-concurrent-0 via Joosts-
MBP.fritz.box...
 Fetching changes...
 Removing zap.out
 HEAD is now at 6024894 Update .gitlab-ci.yml
 From http://192.168.178.82/root/unsecure
 6024894..e6b26fe master -> origin/master
 Checking out e6b26fe5 as master...
 Skipping Git submodules setup
 $ mkdir /zap/wrk/
 $ /zap/zap-baseline.py -J gl-dast-report.json -t $website || true
 2019-02-22 15:50:26,650 Params: ['zap-x.sh', '-daemon', '-port', '40096',
'-host', '0.0.0.0', '-config', 'api.disablekey=true', '-config',
'api.addrs.addr.name=.*', '-config', 'api.addrs.addr.regex=true', '-
config', 'spider.maxDuration=1', '-addonupdate', '-addoninstall',
'pscanrulesBeta']
 Feb 22, 2019 3:50:34 PM java.util.prefs.FileSystemPreferences$1 run
 INFO: Created user preferences directory.

It will try to scan the whole website, as shown in the following example:

 Total of 251 URLs
 PASS: Cookie No HttpOnly Flag [10010]
 PASS: Cookie Without Secure Flag [10011]
 PASS: Incomplete or No Cache-control and Pragma HTTP Header Set [10015]
 PASS: Content-Type Header Missing [10019]
 PASS: Information Disclosure - Debug Error Messages [10023]
 PASS: Information Disclosure - Sensitive Information in URL [10024]
 PASS: Information Disclosure - Sensitive Information in HTTP Referrer
Header [10025]
 PASS: HTTP Parameter Override [10026]
 PASS: Information Disclosure - Suspicious Comments [10027]
 PASS: Viewstate Scanner [10032]
 PASS: Secure Pages Include Mixed Content [10040]
 PASS: CSP Scanner [10055]
 PASS: Weak Authentication Method [10105]
 PASS: Session ID in URL Rewrite [3]
 PASS: Script Passive Scan Rules [50001]
 PASS: Insecure JSF ViewState [90001]
 PASS: Charset Mismatch [90011]
 PASS: WSDL File Passive Scanner [90030]
 PASS: Loosely Scoped Cookie [90033]

Monitoring with Prometheus Chapter 12

[320]

It will then report vulnerabilities immediately, as shown in the following snippet:

WARN-NEW: Web Browser XSS Protection Not Enabled [10016] x 112
 http://blog.joustie.nl/
 http://blog.joustie.nl/robots.txt
 http://blog.joustie.nl/sitemap.xml
 http://blog.joustie.nl
 http://blog.joustie.nl/atom.xml
 WARN-NEW: Cross-Domain JavaScript Source File Inclusion [10017] x 108
 http://blog.joustie.nl/
 http://blog.joustie.nl
 http://blog.joustie.nl/tags/personal/
 http://blog.joustie.nl/2019/01/12/2018-05-29-personalblog/
 http://blog.joustie.nl/2018/05/29/2018-05-20-met-zn-allen-1-wereld/

 FAIL-NEW: 0 FAIL-INPROG: 0 WARN-NEW: 7 WARN-INPROG: 0 INFO: 0 IGNORE: 0
PASS: 19

After scanning, the report is created and uploaded as an artifact, as follows:

 $ cp /zap/wrk/gl-dast-report.json .
 Uploading artifacts...
 gl-dast-report.json: found 1 matching files
 Uploading artifacts to coordinator... ok id=6 responseStatus=201 Created
token=LbTRyRU-
 Job succeeded

As you can see from the preceding examples, by utilizing GitLab Runners with Docker, it is
very easy to start a dynamic security scan.

Dependency checking
Known vulnerabilities in third-party components or dependencies are very common. They
could even be part of the OWASP Top 10 List of Using Components with Known
Vulnerabilities. The OWASP Web Malware Scanner (see https://www.owasp.org) is a
malware scanner for web applications. It can be used to scan a web application by using
signatures from a community build and a managed database. It works by testing each file
of the web application for known signatures of malware.

These known vulnerable components should be identified at an early development stage. It
is also good practice to perform vulnerability scanning of the dependency components not
only in the development stage but also in the production stage on a regular basis.

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org

Monitoring with Prometheus Chapter 12

[321]

Again, the dependency scan in your GitLab workflow is controlled through the .gitlab-
ci.yml file. It also uses the Docker-in-Docker technique, as follows:

dependency_scanning:
 image: docker:stable
 variables:
 DOCKER_DRIVER: overlay2
 allow_failure: true
 services:
 - docker:stable-dind
 script:
 - export SP_VERSION=$(echo "$CI_SERVER_VERSION" | sed
's/^\([0-9]*\)\.\([0-9]*\).*/\1-\2-stable/')
 - docker run
 --env DEP_SCAN_DISABLE_REMOTE_CHECKS="${DEP_SCAN_DISABLE_REMOTE_CHECKS:-
false}"
 --volume "$PWD:/code"
 --volume /var/run/docker.sock:/var/run/docker.sock
 "registry.gitlab.com/gitlab-org/security-products/dependency-
scanning:$SP_VERSION" /code
 artifacts:
 reports:
 dependency_scanning: gl-dependency-scanning-report.json

For this test, we used the same code (https://github.com/CSPF-Founder/
JavaVulnerableLab) as we did in the SAST scan to show our results. Here, you can see the
job as it prepares after being pushed some new code. It should pull the stable-dind
image, as follows:

 Running with gitlab-runner 11.7.0 (8bb608ff)
 on host gGEycKK-
 Using Docker executor with image docker:stable ...
 Starting service docker:stable-dind ...
 Pulling docker image docker:stable-dind ...
 Using docker image
sha256:5b626cc3459ad077146e8aac1fbe25f7099d71c6765efd6552b9209ca7ea4dc1 for
docker:stable-dind ...
 Waiting for services to be up and running...
 Pulling docker image docker:stable ...
 Using docker image
sha256:73d492654a095a2f91078b2dfacd0cfe1a1fe25412fac54b4eb2f5a9609ad418 for
docker:stable ...

https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab

Monitoring with Prometheus Chapter 12

[322]

Running the image will execute the dependency scan, as shown in the following snippets:

 Running on runner-gGEycKK--project-2-concurrent-0 via Joosts-
MBP.fritz.box...
 Fetching changes...
 HEAD is now at e6b26fe Update .gitlab-ci.yml
 From http://192.168.178.82/root/unsecure
 e6b26fe..3aa3162 master -> origin/master
 Checking out 3aa3162f as master...
 Skipping Git submodules setup
 $ export SP_VERSION=$(echo "$CI_SERVER_VERSION" | sed
's/^\([0-9]*\)\.\([0-9]*\).*/\1-\2-stable/')
 $ docker run --env
DEP_SCAN_DISABLE_REMOTE_CHECKS="${DEP_SCAN_DISABLE_REMOTE_CHECKS:-false}" -
-volume "$PWD:/code" --volume /var/run/docker.sock:/var/run/docker.sock
"registry.gitlab.com/gitlab-org/security-products/dependency-
scanning:$SP_VERSION" /code
 ...

The technology used was formerly called Gemnasium. It was bought by GitLab in 2018, as
you can see in a statement at https://docs.gitlab.com/ee/user/project/import/
gemnasium.html.

 Downloaded from central:
https://repo.maven.apache.org/maven2/org/codehaus/plexus/plexus/2.0.6/plexu
s-2.0.6.pom (17 kB at 621 kB/s)
 [INFO] Gemnasium Maven Plugin
 [INFO]
 [INFO] Project's dependencies have been successfully dumped into:
/tmp/app/gemnasium-maven-plugin.json
 [INFO] ---

 [INFO] BUILD SUCCESS
 [INFO] ---

 [INFO] Total time: 5.504 s
 [INFO] Finished at: 2019-02-23T11:45:49Z
 [INFO] ---

https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html

Monitoring with Prometheus Chapter 12

[323]

As you can see in the following code, some vulnerabilities in the MySQL library used were
found:

 +---
---------------+
 | Severity | Tool | Identifier |
 +---
---------------+
 | Unknown | Gemnasium | CVE-2015-7501 |
 | |
 | InvokerTransformer code execution during deserialization in commons |
 | collections/commons-collections |
 | Solution: Upgrade to the latest version |
 | In pom.xml |
 +---
---------------+
 | Unknown | Gemnasium | CVE-2017-3523 |
 | |
 | Vulnerability in the MySQL Connectors in mysql/mysql-connector-java |
 | Solution: Upgrade to the latest version |
 | In pom.xml |
 +---
---------------+
 2019/02/23 11:45:51 [gemnasium-python] Detect project using plugin
 2019/02/23 11:45:51 [gemnasium-python] Project not compatible
 2019/02/23 11:45:51 [retire.js] Detect project using plugin
 2019/02/23 11:45:51 [retire.js] Project not compatible
 Uploading artifacts...
 gl-dependency-scanning-report.json: found 1 matching files
 Uploading artifacts to coordinator... ok id=7 responseStatus=201 Created
token=1cdLFEJP
 Job succeeded

The job ends by uploading the scan report.

Just like the other scans, dependency checking uses the same technique of running a
specific scan program from inside a Docker container. In this case, the scan program in use
is Gemnasium, which was taken over by GitLab last year. If a problematic dependency is
found, it is displayed in the output and in the resulting report.

Monitoring with Prometheus Chapter 12

[324]

A nice feature of GitLab 12.0 is that after your conducted your dependency scan, the
resulting list of dependencies is saved in your project. This is a much wanted feature by
security/compliance teams to keep track of what dependencies are used throughout the
enterprise:

Summary
In this chapter, we discussed the use of monitoring in the workflow, and the possibility to
immediately integrate security monitoring. GitLab provides out-of-the-box opportunities to
set up such things. In this chapter, we also looked at Prometheus and ways to write custom
monitoring for it. In the next chapter, we will discuss integration options for GitLab, in case
you need to connect to other tools.

Monitoring with Prometheus Chapter 12

[325]

Questions
On which system is Prometheus inspired?1.
What is the name of the Prometheus clients?2.
On what path is the GitLab Metrics Exporter normally found?3.
What language was used for the GitLab Monitor Exporter?4.
How do you enable the built-in Prometheus server in the omnibus package?5.
What does SAST mean?6.
What does DAST mean?7.
Which file is used to control security testing?8.

Further reading
Prometheus site: https://prometheus.io

OWASP scan: https://www.owasp.org

Practical Site Reliability Engineering, by Pethuru Raj Chelliah, Shreyash Naithani, and
Shailender Singh: https://www.packtpub.com/virtualization-and-cloud/
practical-site-reliability-engineering

Hands-On Security in DevOps, by Tony Hsu: https://www.packtpub.com/in/
networking-and-servers/hands-security-devops

Industrial Internet Application Development, by Alena Traukina, Jayant Thomas,
Prashant Tyagi, and Kishore Reddipalli: https://www.packtpub.com/in/
application-development/industrial-internet-application-development

https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/networking-and-servers/hands-security-devops
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development
https://www.packtpub.com/in/application-development/industrial-internet-application-development

13
Integrating GitLab with CI/CD

Tools
In this chapter, we will cover some of the integrations that are possible with GitLab. Most of
the time, companies will not use one tool for their complete DevOps journey. GitLab
encourages this for small to midsize companies, but the reality is that big enterprise
customers use a mix of different tools and technologies. We will connect Jira to GitLab, as
this tool is in use in a big portion of the enterprise market. Of course, the venerable Jenkins
server has to be mentioned and tried, and modern organizations use Slack/Mattermost or
other chat tools for real-time collaboration. We will finish this chapter with an example of
how to utilize a basic webhook.

In this chapter, we will cover the following topics:

Using Jira with GitLab
Connecting with Jenkins
Integrating with Mattermost
Using webhooks for events

Technical requirements
For managing omnibus installs, there is one central configuration file called gitlab.rb.
You need to create it or copy an example. There is a template available that you can find
at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-
config-template/gitlab.rb.template. It isn't updated after upgrades. In large parts of
this chapter, I will quote and discuss parts of this file.

The code examples for this chapter are available in this book's GitHub repository
at https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter13

Integrating GitLab with CI/CD Tools Chapter 13

[327]

Using Jira with GitLab
Jira is an IT project management tool that was created by Atlassian in 2002 and was first
created as software for developers.

Jira was originally an issue tracking tool, that is, a tool to list and manage tasks. A task can
be anything: a problem that needs to be solved, a simple TODO, an application, and so on.
However, you can also go much further and put your products, customers, companies, and
so on into this tool.

JIRA is also a workflow engine. This means that you can define workflows (in other words,
processes) that your tasks must follow. This way, you can impose different processes per
project or per task. An example of a simple workflow for a task of the TODO type is OPEN
| IN PROGRESS | READY.

For a different type of task, for example, an application to do something, you can set up this
workflow: OPEN | CONFIRMED | APPROVED | READY.

Through its integrations, GitLab can interface with Jira. Although GitLab already offers a
lot of the project management features that Jira provides, in larger organizations, it can help
integrate these tools. For instance, when overall project management is done in Jira, you can
make sure that specific links are accessible in the GitLab workflow through commit
messages, merge requests, and so on.

As an example, let's create a project in Jira:

We created an account on the Cloud offering from Atlassian (https://www.1.
atlassian.com/enterprise/cloud). When you have set up your instance in the
Atlassian Cloud or on premise, continue to create a new project:

https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud
https://www.atlassian.com/enterprise/cloud

Integrating GitLab with CI/CD Tools Chapter 13

[328]

When your project has been created, you will see the following screen:2.

The next step is to create an issue in this project. Let's do that with minimal3.
information and call it Integrate GitLab and Jira. You will see it create an
issue with an ID of GI-1. We now have an issue in our project management tool,
which we like to link to our GitLab instance:

Integrating GitLab with CI/CD Tools Chapter 13

[329]

Now, we will create a special token in Jira, which we will use in GitLab to update4.
the issue. Please visit https://id.atlassian.com, click Security, and then
click Create and manage API tokens:

Click Create API token:5.

https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com
https://id.atlassian.com

Integrating GitLab with CI/CD Tools Chapter 13

[330]

After you have given it a nice name and clicked Create, it will appear in the list:6.

Now, we need to head over to our GitLab instance to create the project that we7.
want to connect to Jira:

Integrating GitLab with CI/CD Tools Chapter 13

[331]

When the project has been created, go to the settings for this project and look for8.
Jira in integrations:

You can choose whether comments can be created in Jira by following references9.
in a Commit or a Merge request. You need to give the web URL for your Jira
instance, which in our case is https://joustie.atlassian.net.

Your username is the email address, and you can fill in your token that you created in Jira
earlier.

Now comes the harder part. When you change a Jira issue to another state, you need to
provide a transition ID. In our example, this is 11, 21, 31. Now, what is that and where do
we find it? This is a good question, and all you need to do is call Jira's API. They represent
the state an issue can be in, and you need to know this state in order to change them.

In the following example, we called
https://joustie.atlassian.net/rest/api/2/issue/GI-1/transitions.

Integrating GitLab with CI/CD Tools Chapter 13

[332]

When you've found those IDs and saved the changes, Jira will test them, and hopefully,
you'll receive the following feedback:

If you go back to the Integrations page, note that the Jira integration is green. Green is
good:

Integrating GitLab with CI/CD Tools Chapter 13

[333]

If something goes wrong or you would like to know more about these calls, you can consult
integrations_json.log in the rails log directory. For instance, the successful call to
activate Jira integration is as follows:

{"severity":"INFO","time":"2019-03-02T16:48:49.466Z","correlation_id":"28a6
7335-4f3d-40ed-826d-8ca0d6d34f84","service_class":"JiraService","project_id
":12,"project_path":"root/gitlab-integration","message":"Successfully
posted","client_url":"https://joustie.atlassian.net"}

Now, you can resolve an issue in Jira through GitLab:

 Joosts-iMac:gitlab-integration joostevertse$ git commit -m "Initial
commit: Resolves GI-1"
 [master (root-commit) 0418211] Initial commit: Resolves GI-1
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 test.txt

In the project overview, you will find that the issue has moved to Done:

Integrating GitLab with CI/CD Tools Chapter 13

[334]

If you look in the issue itself, you will find that is has a status of Closed:

As you can see, it is possible to integrate project management tools like Jira with GitLab
and keep issues in sync. In this section, we have demonstrated how to integrate a cloud-
based Jira offering with a local on-premise GitLab installation. Now, let's move on and
connect with Jenkins.

Connecting Jenkins to GitLab
Jenkins (a fork of the Hudson project) is a Continuous Integration platform. The platform is
primarily intended for the repeated execution and monitoring of build tasks, as well as the
automated building and testing of applications. The many freely available plugins make it
very easy to expand the functionality of Jenkins. An example of this is its integration with
other systems (such as Sonar, Jira, or CloudBees) or changing its look and feel. It is possible
to build a complete Continuous Delivery pipeline by using the right plugins.

Integrating GitLab with CI/CD Tools Chapter 13

[335]

There is also a GitLab plugin available to integrate Jenkins in a GitLab workflow. You can
download and host Jenkins yourself, or buy capacity in the cloud.

As an example, we have used a local Jenkins container and pulled a container from https:/
/hub.docker.com/_/jenkins. Let's get started:

When your Jenkins container has been configured and started, you need to make1.
sure that the GitLab plugin has been installed:

Click on Manage Jenkins | Manage Plugins:2.

https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins
https://hub.docker.com/_/jenkins

Integrating GitLab with CI/CD Tools Chapter 13

[336]

If you click on the Available tab and filter for GitLab, you can choose the3.
GitLab plugin:

When it has been installed, you will see it appearing as a Success:4.

Now, go back to the Manage Jenkins page, click Configure System, and scroll to5.
the GitLab section.

Integrating GitLab with CI/CD Tools Chapter 13

[337]

Give the connection a name of your choice, provide the correct URL, and click6.
Add to get a GitLab API token. This API token can be generated in GitLab in the
settings:

You only need to fill in the API token here:7.

Integrating GitLab with CI/CD Tools Chapter 13

[338]

The next step is to create projects in Jenkins and GitLab (for this example). For8.
this occasion, we chose a freestyle project and named it petclinic:

Integrating GitLab with CI/CD Tools Chapter 13

[339]

We did the same for GitLab:9.

In your Jenkins project, scroll down to the Source Code Management section and10.
fill in the URL of your GitLab source code repository:

Integrating GitLab with CI/CD Tools Chapter 13

[340]

Next, click Add to add credentials. You need to add a username and password to11.
connect to your HTTP Git repository (or an SSH user/key or an API key):

Integrating GitLab with CI/CD Tools Chapter 13

[341]

Then, close the popup and scroll down to the Build Triggers section. You can12.
then enable Build when a change is pushed to GitLab. For this example, we
have chosen to trigger on push events and opened merge request events:

Click on Save to save your settings.13.

For testing and fast development, I recommend using ngrok. This is a secure tunnel
program that you can use to connect a localhost to a dynamic URL hosting service. You can
find the tool at http://ngrok.com. Download the binary and place it on the local path.

http://ngrok.com
http://ngrok.com
http://ngrok.com
http://ngrok.com
http://ngrok.com
http://ngrok.com
http://ngrok.com

Integrating GitLab with CI/CD Tools Chapter 13

[342]

We can use it to tunnel from the internet (where our GitLab lives in a cloud container) to
our local Docker container running Jenkins.

Start ngrok to connect an internet URL to our local Jenkins running on 8080 in Docker:

 Joosts-iMac:images_chapter12 joostevertse$ ngrok http 8080

After starting ngrok, you will be presented with the following output:

Now, change some code in the repository and push the code to GitLab:

Joosts-iMac:petclinic joostevertse$ git push -u origin master
 Enumerating objects: 130, done.
 Counting objects: 100% (130/130), done.
 Delta compression using up to 16 threads
 Compressing objects: 100% (119/119), done.
 Writing objects: 100% (130/130), 352.91 KiB | 12.17 MiB/s, done.
 Total 130 (delta 26), reused 0 (delta 0)
 remote: Resolving deltas: 100% (26/26), done.
 To https://gitlab.joustie.nl/root/petclinic.git
 * [new branch] master -> master
 Branch 'master' set up to track remote branch 'master' from 'origin'.
 Joosts-iMac:petclinic joostevertse$

Integrating GitLab with CI/CD Tools Chapter 13

[343]

You will notice the hook being triggered in ngrok:

By going to Jenkins, you will see that it receives an event and starts building the project:

Integrating GitLab with CI/CD Tools Chapter 13

[344]

As you can see, it's quite easy to connect Jenkins to GitLab. You can choose to let Jenkins
react to different kinds of events in GitLab.

Integrating with Mattermost
Mattermost is the number one open source Slack alternative, and can be hosted on a
proprietary platform that you manage yourself.

When teams use these tools, they can become more productive because of direct
communication via chat in specialized channels. There, they can exchange quick
information bits – even files (images/video, anything) and datafiles that are used by
applications.

You can use Mattermost via a browser, or use the platform-specific app on your mobile
device. No specific personal data is used other than your email address.

What is also one of its killer features is that it easily connects to third-party applications and
systems such as GitLab, Jira Jenkins, Nagios, Zabbix, Kopano, and many more! The
company has actually been bought by GitLab, and Mattermost is part of the omnibus
installation. In other words, you can easily enable it and run it together with GitLab.
ChatOps has been supported since GitLab Ultimate 10.6, but came to GitLab Core in 11.9.

As an example, we will set up a new Mattermost server to integrate with a GitLab instance
in order to use slash commands.

Because Mattermost is part of the GitLab omnibus package, you can enable/install it by
editing the gitlab.rb file, and use gitlab-ctl afterwards to reconfigure your instance.

The configuration key to change in gitlab.rb is as follows:

mattermost['enable'] = true

After Mattermost has been started, you can go the integrations page of the settings of your
project and search for the Mattermost slash command service. Click on Add to Mattermost.
This will only work automatically on Mattermost 3.4, so make sure that your omnibus
package isn't too old.

Integrating GitLab with CI/CD Tools Chapter 13

[345]

If Mattermost isn't installed on your server, you can pull a simple Mattermost image from
Docker Hub. mattermost/mattermost-preview will do fine. Let's get started:

When you log in for the first time in your container (by default, this is via1.
http://localhost:8065), you have to create a user:

Integrating GitLab with CI/CD Tools Chapter 13

[346]

After you have created the user, you will want to create a team:2.

That team needs a URL as well:3.

Integrating GitLab with CI/CD Tools Chapter 13

[347]

You can click the hamburger menu to reveal options for the team:4.

Go to the system console:5.

Integrating GitLab with CI/CD Tools Chapter 13

[348]

Look for Custom Integrations and check that slash commands are enabled. Save6.
the settings:

After this, click the hamburger menu and click Switch back to.... Clicking the7.
hamburger menu in the team context, you can click Integrations. Here, you can
click on Slash Command, where you will find a page where you can define a
slash command that can be triggered by Mattermost:

Integrating GitLab with CI/CD Tools Chapter 13

[349]

The information we need to fill in here can be got from GitLab:8.

Integrating GitLab with CI/CD Tools Chapter 13

[350]

Log in to GitLab and go to Integrations in the settings part of your repository.9.
Then, click Mattermost slash command. Here is the information you need to fill
in in Mattermost:

Integrating GitLab with CI/CD Tools Chapter 13

[351]

In the following screenshot, you can see the settings as we copied them. Click10.
Save or Update when you are done:

Integrating GitLab with CI/CD Tools Chapter 13

[352]

You will now be presented with a token to be used in GitLab. Copy the11.
Mattermost token:

Paste it into the settings page for your Mattermost integration in GitLab, and12.
save the changes:

Now, go to your team channel in Mattermost and press /. If you issue /gitlab13.
help, Mattermost will ask you to connect your GitLab account:

Integrating GitLab with CI/CD Tools Chapter 13

[353]

You will be redirected to GitLab, where you will have to authorize the14.
connection:

Now, by going back to Mattermost and issuing /gitlab help once more, you15.
will be presented with the options for the command. There are several, and these
can help your support people run ChatOps:

Let's create a new issue called gitlab issue new test:16.

Integrating GitLab with CI/CD Tools Chapter 13

[354]

If you go back to GitLab, you will find that a new issue has been created for the17.
GitLab project:

The ultimate integration is to use CI command functions, as described here: https://docs.
gitlab.com/ee/ci/chatops/.

Since GitLab 11.9, ChatOps is even part of GitLab Core, so its functionality isn't limited to
the GitLab Enterprise Edition.

In this section, we have showed you how to integrate your GitLab repository issues with
the Mattermost chat application. There are endless possibilities if you create your own slash
commands. Now, let's take a look at using webhooks for events.

Using webhooks for events
Webhooks are used as a signal between applications. You can see it as a callback from a
different context. This call is made with the HTTP protocol (possibly with SSL). An attempt
is made to provide information as efficiently as possible and in real time, and JSON is
usually used as a data format.

https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/

Integrating GitLab with CI/CD Tools Chapter 13

[355]

The strength lies in the fact that as few operations as possible are necessary in order to get
feedback. Usually, the most work lies in the implementation of the signal.

For a proof of concept, consider the following. Let's assume that when we push new code to
GitLab, we have to send a signal from GitLab to an application that we have built
ourselves.

To implement this model, we've chose the lightweight Flask micro-framework for Python:

from flask import Flask, request
import json
app = Flask(__name__)

def runsomething():
 print "This is triggered"

@app.route('/',methods=['POST'])
def trigger():
 data = json.loads(request.data)
 print "New commit by: {}".format(data['commits'][0]['author']['name'])
 print "New commit by: {}".format(data['commits'][0]['author']['email'])
 print "New commit by: {}".format(data['commits'][0]['message'])

 runsomething()
 return "OK"

if __name__ == '__main__':
 app.run()

Let's run through this code step by step. In the following code, the basic app has been
initiated. The imports are purely the basic Flask framework and, in particular, the request
object. The app is instantiated:

 from flask import Flask, request
 import json
 app = Flask(__name__)

The following function can be used to do the real work:

 def runsomething():
 print "This is triggered"

Then follows the method that is decorated with a route, and parses the request for certain
information. There's no check here – just reading the information from the JSON webhook,
running the real work function, and returning OK:

@app.route('/',methods=['POST'])

Integrating GitLab with CI/CD Tools Chapter 13

[356]

 def trigger():
 data = json.loads(request.data)
 print "New commit by: {}".format(data['commits'][0]['author']['name'])
 print "New commit by: {}".format(data['commits'][0]['author']['email'])
 print "New commit by: {}".format(data['commits'][0]['message'])

 runsomething()
 return "OK"

The following main part, combined with the first block, is part of the basic Flask
implementation:

 if __name__ == '__main__':
 app.run()

When you run this code with python server.py, it will open port 5000 on the localhost:

 Joosts-iMac:gitlab-webhook joostevertse$ python server.py
 * Running on http://127.0.0.1:5000/

If we want something on the internet to connect to it, we can use the venerable ngrok to
link the port:

 Joosts-iMac:Downloads joostevertse$ ngrok http 5000

ngrok is now running, as shown in the following screenshot:

Integrating GitLab with CI/CD Tools Chapter 13

[357]

We can now define the webhook in GitLab. You can find it in the Settings |
Integrations section of your GitLab project. After you have defined the hook, you can run a
test to verify its operation:

We get the following result when a call is triggered through GitLab. This is the connection
going through the ngrok proxy:

Integrating GitLab with CI/CD Tools Chapter 13

[358]

In GitLab, if you click the Edit button, you will see the result of the webhook call. It will
contain the body that was sent:

Integrating GitLab with CI/CD Tools Chapter 13

[359]

You will also see the response that was given by the other end. You can see the
OK response clearly:

The result of this call was that our custom method was triggered and some specific
information such as author, email, and message was printed on stdout:

Joosts-iMac:gitlab-webhook joostevertse$ python server.py
* Running on http://127.0.0.1:5000/
New commit by: Joost
New commit by: joustie@gmail.com
New commit by: Added text
This is triggered
127.0.0.1 - - [03/Mar/2019 17:10:39] "POST / HTTP/1.1" 200 -

We have seen that it is also possible to use a generic event mechanism such as webhooks.
You can modify your own software or commercial-off-the-shelf (COTS) application to
receive events from GitLab.

Summary
In this chapter, we discussed the ways of integrating GitLab with other products. Every
integration has its own special instruction, but the basic idea is that you have to set up trust
relationships and map attributes. GitLab is already shipped with a lot of possible
integrations out of the box. These are called project services, and the documentation can be
found here: https://docs.gitlab.com/ee/user/project/integrations/project_
services.html. This chapter concludes the third section of this book, in which we've
discussed the GitLab workflow and the underlying rationale behind it.

In the next part of this book, we will discuss the most successful part of GitLab: GitLab CI
and runners. We will start by talking about how to set up a project for GitLab CI.

https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html
https://docs.gitlab.com/ee/user/project/integrations/project_services.html

Integrating GitLab with CI/CD Tools Chapter 13

[360]

Questions
What is Jira used for?1.
Jira is from which company?2.
Which ID or IDs are needed to manipulate issues in Jira?3.
Which project is Jenkins forked from?4.
What mechanism does Jenkins use to extend functionality?5.
What is ChatOps?6.
How can you control things from a Mattermost channel?7.
In GitLab, where can you find the status of a webhook?8.

Further reading
Jira 8 Essentials - Fifth Edition, by Patrick Lee: https://www.packtpub.com/in/
application-development/jira-8-essentials-fifth-edition

Jenkins 2.x Continuous Integration Cookbook - Third Edition, by Mitesh Soni and Alan
Mark Berg: https://www.packtpub.com/in/networking-and-servers/jenkins-
2x-continuous-integration-cookbook-third-edition

Jenkins Fundamentals, by Joseph Muli and Arnold Okoth: https://www.packtpub.
com/in/networking-and-servers/jenkins-fundamentals

GitLab ChatOps: https://docs.gitlab.com/ee/ci/chatops/

https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/application-development/jira-8-essentials-fifth-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-2x-continuous-integration-cookbook-third-edition
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://www.packtpub.com/in/networking-and-servers/jenkins-fundamentals
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/
https://docs.gitlab.com/ee/ci/chatops/

4
Section 4: Utilize GitLab CI and

CI Runners
After reading this section, you will be able to describe the GitLab CI components and create
pipelines and jobs. You'll also be able to set up runners to be used in your project.

This section comprises the following chapters:

Chapter 14, Setting Up Your Project for GitLab Continuous Integration
Chapter 15, Installing and Configuring GitLab Runners
Chapter 16, Using GitLab Runners with Docker or Kubernetes
Chapter 17, Autoscaling GitLab CI Runners
Chapter 18, Monitoring CI Metrics

14
Setting Up Your Project for

GitLab Continuous Integration
Continuous Integration (CI) is one of the most important pillars of Extreme
Programming (XP). Continuous Integration has been one of GitLab's most popular features
since it was built in version 8. It is very popular with independent developers and open
source projects and is currently gaining popularity in other market segments.

Getting started is easy. As we showed you earlier, in Chapter 10, Create Your Product,
Verify, and Package it (in the Release and Configure sections), Auto DevOps is switched on by
default, so that when adding code to a project, a deployment pipeline is automatically set
up in which various jobs are running. These jobs will be run by a GitLab Runner, which
you will have to set up. This is completely configurable to the wishes of the developer. The
results of the jobs are collected and showed as passed or failed and are part of the logic in
the pipeline. Based on the result, other automation in the pipeline can be triggered. The
basis for this functionality is in the .gitlab-ci.yml file. If this file is present in a project, it
will be parsed and different pipelines and jobs will start running.

In this chapter, we will be covering the following topics:

Pipelines
Jobs
Creating .gitlab-ci.yml
Configuring a Runner

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[363]

Technical requirements
To follow along with the instructions in this chapter, please download the Git repository
with the examples available at GitHub: https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter14.

GitLab CI must be enabled in your GitLab instance (see Chapter 3, Configuring GitLab
Using the Web UI).

Pipelines
A pipeline in the software engineering world is understood as a chain of events (of
processes, components, and so on) that automatically triggers and delivers input to the next
element. It resembles the physical pipelines that exist in the real world.

In a CI context, a pipeline is a collection of sequential steps that integrate code from
different developers. The chain of events is triggered by a commit or push to a source code
repository such as GitLab. The build system (for example, Jenkins or GitLab CI) is notified
of a new version, compile, and source code and runs unit testing.

Before we go any further, you should understand that without unit tests, or other
automated tests, the effort of integrating pieces of code by different developers is very
difficult. So, before you begin building pipelines, make sure that your developers have
written test code. That way, you can make sure that the code is checked and at least adheres
to certain quality checks.

If the unit tests succeed in your pipeline, the next step is to run integration tests. If they also
succeed, the artefact that was built can be pushed or saved in a binary repository, or it can
be directly deployed to a staging environment where the code will run.

Some pipelines can even be deployed to an acceptance or semi-production environment,
where user validation of the solution built takes place. This is called Continuous
Deployment (CD). Some call this Deployment to Production CD, but it depends on your
definition of the concept.

Modern build software has the concept of building pipelines as part of their architecture.
Products such as Jenkins have adopted it in their workflow, but cloud solutions, such as
Azure DevOps (which is TFS in the cloud), have too.

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter14

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[364]

You can find pipelines in GitLab for your project in the left-hand menu bar, under CI/CD,
as shown in the following screenshot:

The first item in the menu is a link to an overview of your Pipelines. Here, you can see
whether pipelines have passed or failed, retry pipelines, or download artifacts, as shown in
the following screenshot:

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[365]

The second link in the menu takes you to the list of Jobs for a project (which we will cover
shortly), as shown in the following screenshot:

The third link is a feature of GitLab CI called Schedules. As you can see in the following
screenshot, we have created a schedule for a run of the pipeline to be executed for the
Eventmanager project:

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[366]

If you click an item in the schedule list, you will see that there are many configurable items
in it. For example, you can specify which branch to run on, as shown in the following
screenshot:

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[367]

A nice way of discovering more about your build is the chart feature in GitLab CI, where
insight into the metrics of your pipelines is provided, as shown in the following screenshot:

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[368]

The following screenshot shows a high-level design of a pipeline that runs in GitLab:

We have now demonstrated that GitLab CI incorporates the general concept of a build
pipeline and also records several metrics about the successes or failures of the pipeline's
steps. In the following section, we will take a look at these individual steps.

Jobs
Pipeline configuration begins with jobs:

Jobs are the most fundamental element of a pipeline and are executed by GitLab
Runners
Jobs are created with constraints, which govern under what conditions they
should be executed
Jobs are top-level elements that can have an arbitrary name and must contain the
script element as a minimum requirement
There can be an unlimited number of jobs

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[369]

In the pipeline overview, you'll find several jobs. They have a status, an ID, are part of a
stage, and have a name, as shown in the following screenshot:

You can create jobs by adding them to a configuration file called .gitlab-ci.yml. We will
discuss this file in more depth in the following section.

An example of a pipeline containing two jobs is as follows:

job1:
 script: "execute-this-script-for-job1"
job2:
 script: "execute-this-script-for-job2"

The preceding example is a basic CI/CD pipeline that consists of two named jobs (job1 and
job2), which execute a script section (in our example, this does nothing). In the script
section, you can specify a command, script, or a chain of commands. For instance, to build a
JavaScript, you can set script as npm build or run a shell unit test called unit-test.sh.

Jobs are not run on the GitLab application server, but are picked up by GitLab Runners.
The runners execute the jobs in their own environment; for example, runner A can build
job1 and runner B can build job2. Note that the jobs are independent from each other. The
results from these jobs are aggregated on the GitLab server.

Creating .gitlab-ci.yml
How GitLab CI interacts with your profile is largely controlled by the .gitlab-
ci.yml file, which must be added to the root of your project. When you push code to your
repository, GitLab will test whether it's there and start a pipeline with jobs for that specific
commit.

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[370]

The format of the file is YAML Ain't Markup Language (YAML). YAML is currently a
widely used format for configuration files and is best described as a data serialization
language.

We have already given you an example of a .gitlab-ci.yml file with two jobs in an
earlier section. In other chapters, we used a .gitlab-ci.yml file to describe a
deployment. So, what are the available possibilities of this file?

A lot of combinations are possible, but the fundamental way of working is to first define
stages in the file and then add script sections. The complete reference of this file can be
found here: https://docs.gitlab.com/ee/ci/yaml/README.html.

When you are creating your YAML file, it is nice to know that, after saving, it will be
checked by a linter to verify the syntax of the file, as shown in the following screenshot:

The possibilities for this file are endless, so the best way to figure out what works for you is
to look at open source projects on the GitLab website for inspiration, available at: https://
docs.gitlab.com/ee/ci/examples/README.html.

Configuring a runner
We briefly described the concept of GitLab Runners in Chapter 1, Introducing the GitLab
Architecture. Runners are essentially build environments that run on a separate machine
that connects to the GitLab application's server and asks jobs to execute. Runners help to
automate product development and achieve DevOps integration.

We configure a runner on the GitLab side, and on the GitLab Runner client side. Remember
that there is not a single type of runner.

There are different kind of runners, including:

A Shell executor
A Docker executor
A Docker Machine and Docker Machine SSH (auto-scaling) executor

https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html
https://docs.gitlab.com/ee/ci/examples/README.html

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[371]

A Parallels executor
A VirtualBox executor
A SSH executor
A Kubernetes executor

For the GitLab CI interface, this does not matter. All runners look the same.

The GitLab Runner clients are available on multiple platforms, as it is a Go binary that runs
on many platforms. The configuration file is called config.toml and is in the TOML
format, which is less complex than the YAML format.

The specification of this format is publicly available and can be found at https://github.
com/toml-lang/toml.

GitLab Runner features
Features of GitLab Runner include the following:

The ability to run multiple jobs concurrently
The use of multiple tokens with multiple servers (even per project)
The ability to limit the number of concurrent jobs per token

The jobs GitLab Runner can execute can do the following:

Run on a local computer without containers or virtualization
Run inside Docker containers
Run inside Docker containers and execute jobs over SSH
Run using Docker containers with autoscaling on different clouds and
virtualization hypervisors
Run by connecting to a remote SSH server, where it can be executed

Additional features include the following:

GitLab Runner supports Bash, Windows Batch, and Windows PowerShell
The runner binary works on GNU/Linux, macOS, and Windows (all Docker-
supported platforms)
A runner allows the customization of a job-running environment
A runner can have an automatic configuration reload without restart
It is to easy set up, with support for Docker, Docker SSH, Parallels, or SSH-
running environments

https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[372]

Runners also support the caching of Docker containers
The Runner package supports installation as a service for GNU/Linux, macOS,
and Windows
You can enable an embedded Prometheus metrics HTTP server in a runner

You can find an overview of the registered runners in GitLab by logging in as an admin
and checking the Runners menu on the left, as shown in the following screenshot:

You should now see a list of runners that have registered on your GitLab instance, as
shown in the following screenshot:

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[373]

As shown in the following screenshot, if you click a runner, you will see that it is possible to
do the following:

Configure a paused runner not to accept new jobs
Designate a runner as protected
Set a runner to pick up jobs with or without tags
Lock a runner to projects
Set a maximum timeout for a job
Tag runners

On the left, you will be able to see which jobs have been recently processed by a runner, as
shown in the following screenshot:

Setting Up Your Project for GitLab Continuous Integration Chapter 14

[374]

So far, you have seen how GitLab CI fits in with the GitLab product and also how GitLab
Runners are registered with an instance. We have also looked at the basic features of GitLab
Runners and showed you how to create a configuration file for jobs to be picked up and
executed by a runner.

Summary
In this chapter, we discussed GitLab CI, the most critical feature of GitLab after offering
version control. We explained how to trigger pipelines and how to design them using the
.gitlab-ci.yml file. Then, we showed you the jobs that make up the pipelines. We
finished with some information on how GitLab runners fit into this architecture. In the next
chapter, we are going to show you more about the GitLab Runner client.

Questions
Name one of the pillars of Extreme Programming.1.
What file is used to describe jobs and pipelines?2.
How does a build system know when to build software in a pipeline?3.
What tests are necessary for reaching the integration phase?4.
Which tag is used in the .gitlab-ci.yml file to execute a job?5.
What is the name of the configuration file used by the runner?6.
How many concurrent sessions can a runner start?7.
How can you get metrics about the execution of a GitLab runner?8.

Further reading
gRPC [Golang] Master Class: Build Modern API and Microservices [Video] by Stephane
Maarek: https://www.packtpub.com/web-development/grpc-golang-master-
class-build-modern-api-and-microservices-video.
Hands-On Auto DevOps with GitLab CI [Video] by Alan Hohn: https://www.
packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-
video.

https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/web-development/grpc-golang-master-class-build-modern-api-and-microservices-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video
https://www.packtpub.com/in/application-development/hands-auto-devops-gitlab-ci-video

15
Installing and Configuring

GitLab Runners
In this chapter, we will take a look at the GitLab Runner client architecture. After studying
this topic, you will understand the basic flow of control between GitLab CI and Runners. In
the second part of this chapter, I will show you how to install Runner software on different
operating systems. Since the Runner program is written in Golang, there are many
platforms that are capable of running the client. Golang is known for its excellent multi-
platform support.

In this chapter, we will cover the following topics:

The Runner client architecture
Creating a basic runner with the shell executor

Technical requirements
To follow along with the instructions in this chapter, please download the Git repository
with the examples available from GitHub: https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter15.

The other requirements for this chapter are as follows:

GitLab Runner client – Linux 64-bit: https://gitlab-runner-downloads.s3.
amazonaws.com/latest/binaries/gitlab-runner-linux-amd64

Linux 32-bit: https://gitlab-runner-downloads.s3.amazonaws.com/latest/
binaries/gitlab-runner-linux-386

Linux ARM: https://gitlab-runner-downloads.s3.amazonaws.com/latest/
binaries/gitlab-runner-linux-arm

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter15
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-arm

Installing and Configuring GitLab Runners Chapter 15

[376]

macOS 64-bit: https://gitlab-runner-downloads.s3.amazonaws.com/latest/
binaries/gitlab-runner-darwin-amd64

FreeBSD 64-bit: https://gitlab-runner-downloads.s3.amazonaws.com/
latest/binaries/gitlab-runner-freebsd-amd64

FreeBSD 32-bit: https://gitlab-runner-downloads.s3.amazonaws.com/
latest/binaries/gitlab-runner-freebsd-386

Windows 32-bit: https://gitlab-runner-downloads.s3.amazonaws.com/
latest/binaries/gitlab-runner-windows-386.exe

Windows 64-bit: https://gitlab-runner-downloads.s3.amazonaws.com/
latest/binaries/gitlab-runner-windows-amd64.exe

cURL: https://curl.haxx.se/download.html

The Runner client architecture
We took a brief look at the GitLab architecture in Chapter 1, Introducing the GitLab
Architecture. It was explained that a GitLab Runner registers with a GitLab instance and
waits for a job to execute. Unlike the individual components that are a part of the GitLab
frontend application server, the runner has a very straightforward architecture. The
communication between a runner and its GitLab host is basically one-way.

Basic architecture
The main network communication is from the GitLab Runner to the GitLab CI, never the
other way around. This is shown in the following diagram:

https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-darwin-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-amd64
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-freebsd-386
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Installing and Configuring GitLab Runners Chapter 15

[377]

The behavior is best depicted by a sequence diagram like the following one:

When the GitLab Runner starts, it tries to find its coordinator by contacting the GitLab
URL. When it registers itself with the registration token, it gets a special token to connect to
GitLab. After a restart, it connects and waits for a job from GitLab CI. It polls GitLab in
intervals, and when there is nothing to do, it will check GitLab less often to prohibit too
much network traffic.

Installing and Configuring GitLab Runners Chapter 15

[378]

When a job is queued in GitLab CI, it will try to find an available runner. After receiving
the command, it will clone the project-specific commit that triggered the job and will
execute the steps defined in the .gitlab-ci.yml file. After execution, the results are sent
back to GitLab.

GitLab CI has two types of runners:

Specific Runners: As a developer, you can create your own runners and register
them to a project in GitLab. Only then is the project visible to the runner.
Shared Runners: A GitLab administrator can also designate a runner to be
shared. It can then pick up jobs from several projects. Because this is potentially
classed as a security breach, be careful when you're promoting runners to be
shared.

In the following screenshot, you can see the CI/CD configuration of a project in GitLab,
where you can set which runner to use:

Installing and Configuring GitLab Runners Chapter 15

[379]

The GitLab Runner clones the repository and performs steps that are defined in the
.gitlab-ci.yml file. It is possible to inject special variables that can be protected on the
GitLab project level:

We've explained the basic architecture of the runner platform, so now we'll install the
software on different operating systems.

The GitLab Runner software is available for the following operating systems:

Linux
FreeBSD
macOS
Windows

The installation procedure is largely identical on all systems, with subtle differences. In the
next section, we will show you how to install the basic Runner on several types of operating
systems.

Creating a basic Runner with the shell
executor
On the machine where you install the GitLab Runner software, you can run the shell
executor to locally build software. This shell type of executor can be run on all platforms
where the runner software is installed. Therefore, you can run Bash or a Bourne shell on a
Unix-like system, or CMD or PowerShell on the Windows platform.

Installing and Configuring GitLab Runners Chapter 15

[380]

It isn't a very safe way to build because it can access local resources on the system where
the runner executes. More secure executors will be introduced in later chapters.

In the next section, we will demonstrate how to install the GitLab Runner software for your
platform.

Installing Runner on Linux
If you run a Linux distribution with a package management system such as

 yum or apt, you can install the GitLab Runner package using that method. Alternatively,
you can install the software manually. First, we will cover the installation via a package
manager.

Using a package manager
For yum-based systems, you can add the official GitLab package repository:

curl -o script.rpm.sh
https://packages.gitlab.com/install/repositories/runner/gitlab-runner/scrip
t.rpm.sh
 less script.rpm.sh #(check the contents, if you are fine with it make it
executable and run it)
 chmod +x script.rpm.sh
 ./script.rpm.sh

After that, you can install GitLab with this basic command (as root or with sudo):

yum install gitlab-runner

For apt-based systems, it's a bit more tricky to stay up to date with the latest and greatest.
We can add a link to GitLab apt repositories, but unfortunately, Debian has named the
package in the base repository the same as GitLab. This means that the base packages
automatically take precedence. A solution to this is to pin the package to the right
repository. This can be done by adding a file to /etc/apt/preferences.d:

cat <<EOF >> /etc/apt/preferences.d/pin-gitlab-runner.pref
 Explanation: Pin GitLab-runner package
 Package: gitlab-runner
 Pin: origin packages.gitlab.com
 Pin-Priority: 999
 EOF

Installing and Configuring GitLab Runners Chapter 15

[381]

After that, you can install the correct apt package repositories:

curl -o script.deb.sh
https://packages.gitlab.com/install/repositories/runner/gitlab-runner/scrip
t.deb.sh
 less script.deb.sh #(check the contents, if you are fine with it make it
executable and run it)
 chmod +x script.deb.sh
 ./script.deb.sh

The output from the preceding command is shown in the following code block. As you can
see, it checks the gpg key and adds the package repository:

Detected operating system as debian/stretch.
 Checking for curl...
 Detected curl...
 Checking for gpg...
 Detected gpg...
 Running apt-get update... done.
 Installing debian-archive-keyring which is needed for installing
 apt-transport-https on many Debian systems.
 Installing apt-transport-https... done.
 Installing /etc/apt/sources.list.d/runner_gitlab-runner.list...done.
 Importing packagecloud gpg key... done.
 Running apt-get update... done.

 The repository is setup! You can now install packages.

The next step is much simpler – you just install it via apt-get:

apt-get install gitlab-runner

In the output, you will find a message like the following, which means that you have now
installed all the binaries. However, you have to register the GitLab Runner first before
running it:

...
 gitlab-runner: Service is not running.
 ...

The process of registering the runner is explained in more detail in the Registering a
runner section.

Updating the package is done just as updating all the other packages on the system is done:
you can run the apt-get update or yum update command.

Installing and Configuring GitLab Runners Chapter 15

[382]

When installing with apt-get or yum, package management will give you a GitLab Runner
install with the necessary configuration files and init scripts for your Linux distribution.
You can also choose to just download the runner binary and run it in a generic way.

Using a manual installation
Simply download one of the binaries for your CPU architecture (x86-64, x86-32, or ARM):

x86-64 bit architecture:

curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gi
tlab-runner-linux-amd64

x86-32 bit architecture:

curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gi
tlab-runner-linux-386

ARM architecture: This is the binary for the ARM CPU architecture, in a list:

curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gi
tlab-runner-linux-arm

When you're getting binaries this way, you have to make them executable:

chmod +x /usr/local/bin/gitlab-runner

Then, you can create a GitLab Runner user as root:

useradd --create-home gitlab-runner

You then need to install it and run it as a service:

gitlab-runner install --user=gitlab-runner --working-
directory=/home/gitlab-runner
gitlab-runner start

Although the manual installation is a bit more work than via the package managers, it still
isn't a complex process. One advantage is that, when using the manual installation, you
can't install newer versions of the runner. The package manager maintainers will never
install a development version, while you can. Updating the binary is not very hard either.

Installing and Configuring GitLab Runners Chapter 15

[383]

Updating a manually installed runner binary
The process we are following when updating is to replace the Golang binary that was
downloaded previously. It does have to be stopped, so make sure it isn't running,
otherwise the installation will fail.

Stop the service (you need root permissions, like before):

gitlab-runner stop

Then, download a new binary to replace the older one:

curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-run
ner-linux-386
 curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-run
ner-linux-amd64

Set the execute bit on the runner binary:

chmod +x /usr/local/bin/gitlab-runner

Start the runner again:

gitlab-runner start

The manual install is much easier, but you have to manage the updates yourself. In this era
of automation, it makes more sense to let the package manager that's available for your
distribution to manage it.

Installing on Mac
Just like on Linux, there are several ways to install the GitLab Runner software. Unlike on
Linux, where package management is recommended by GitLab, for macOS, they
recommend the manual install. The other way to install is by using the Homebrew
installation method, which you saw earlier in the book (Installing Redis section of Chapter
1, Introducing the GitLab Architecture).

Installing and Configuring GitLab Runners Chapter 15

[384]

The manual way of installing a runner
First, get the binary for your system (with sudo):

sudo curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-run
ner-darwin-amd64

Then, just like we did previously, make the binary executable:

$ sudo chmod +x /usr/local/bin/gitlab-runner

Now that we have the binary in place, we can run the program as another user if we want:

$ cd ~
$ gitlab-runner install
$ gitlab-runner start

The runner will be installed and will be run after a system reboot.

Installing and using the Homebrew package manager
A unified package manager for macOS doesn't really exist, but the one that's used the most
is Homebrew, which can be found at https://brew.sh/. It works with formulas that
contain scripts and settings to install binaries.

A Homebrew formula exists to install GitLab Runner:

brew install gitlab-runner

The next step is to install the runner as a service (this will also start it):

brew services start gitlab-runner

There are some drawbacks to using macOS as a runner platform. Many developers use
runners on macOS to build iOS-related software. Often, UI testing is also involved. It isn't
possible to automate this. You would have to run in the background as a system service
(LaunchDaemon), and then the UI isn't reachable anymore. You can only run the runner in
user mode to get access to the UI, which is why you must always log in to run the GitLab
Runner.

Updating the runner is done by issuing brew upgrade gitlab-runner. For a manual
install, it's a bit more complicated.

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Installing and Configuring GitLab Runners Chapter 15

[385]

Updating a manually installed runner binary
Just like we did for Linux, we are replacing the Golang binary that was downloaded
previously. It also needs to be stopped, so make sure it isn't running, otherwise the
installation will fail:

First, we need to stop the service:1.

gitlab-runner stop

Like we did previously, get the binary to replace the runner's executable:2.

curl -o /usr/local/bin/gitlab-runner
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gi
tlab-runner-darwin-amd64

Make the downloaded binary executable:3.

chmod +x /usr/local/bin/gitlab-runner

Start the GitLab Runner service again:4.

gitlab-runner start

The steps to install the GitLab Runner software are roughly the same on the Linux and
macOS platforms. The good part about using a package manager is that the software is
easier to upgrade.

Installing on Windows
Unlike GitLab itself, which doesn't run on Windows, you can operate the GitLab Runner
software on Windows machines.

There are two types of runner binaries, depending on your CPU architecture:

32-bit version (https://gitlab-runner-downloads.s3.amazonaws.com/latest/
binaries/gitlab-runner-windows-386.exe)
64-bit version (https://gitlab-runner-downloads.s3.amazonaws.com/latest/
binaries/gitlab-runner-windows-amd64.exe)

Download it and copy it to gitlab-runner.exe in a folder on your local drive; for
example, C:-runner.

https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-386.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe
https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe

Installing and Configuring GitLab Runners Chapter 15

[386]

Now, you need an elevated command prompt to register and install the software:

c:\cd c:\gitlab-runner
c:\gitlab-runner\gitlab-runner.exe register

The registration steps will be shown in the next section as they are almost universal for all
platforms.

When registration succeeds, you can start the GitLab Runner:

c:\gitlab-runner\gitlab-runner.exe install
c:\gitlab-runner\gitlab-runner.exe start

Now that we have installed the runner software, the next step is to register with GitLab.

Registering a runner
A GitLab Runner needs some basic information to start:

The URL where it can find GitLab, which is called the coordinator URL.
The special token that you can find in GitLab that's meant to register runner
instances.
A description that will later show up in the GitLab CI.
Tags, which you can give to the runner to make it easier to find in GitLab CI.
The type of executor (remember that there are many types, all of which were
named in the Runner client architecture section).

This basic information can be provided to the runner in two ways: interactive and non-
interactive. First, we will discuss the interactive way.

The interactive way of registering a runner
The web location of the GitLab server to connect is the following:

sudo gitlab-runner register

 Please enter the gitlab-ci coordinator URL (for example, https://gitlab.com):

 https://gitlab-ee.joustie.com

https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com

Installing and Configuring GitLab Runners Chapter 15

[387]

You also need to enter the runner registration token since it's needed to register with
GitLab:

 Please enter the gitlab-ci token for this runner
 xxx

The runner registration token can be found on the Admin Area | Overview | Runners
page or under Projects.

You want a nice description so that you can find the runner later (the default is hostname):

 Please enter the gitlab-ci description for this runner
 [hostname] my-runner

Enter the tags that should apply to this runner (for example, javarunner). This can be
changed later in GitLab:

 Please enter the gitlab-ci tags for this runner (comma separated):
 javarunner,another-javarunner

The most important part is determining the type of executor (for this chapter, I chose the
shell executor):

Please enter the executor: ssh, docker+machine, docker-ssh+machine,
kubernetes, docker, parallels, virtualbox, docker-ssh, shell:
 shell

The non-interactive way of registering a runner
In larger environments, deployments are frequently scripted. So, for the runner, there is
also a non-interactive install available to help in the effort of automating the infrastructure.
You can specify subcommands to the GitLab register argument. To find out about these
options, type the following on the command line:

gitlab-runner register -h

To register a runner, using the most common options, you would do the following:

sudo gitlab-runner register \
 --description "docker-runner" \
 --url "https://gitlab-ee.joustie.com/" \
 --registration-token "xxxx" \
 --executor "docker" \
 --docker-image alpine:latest \
 --non-interactive \
 --tag-list "docker,aws" \

Installing and Configuring GitLab Runners Chapter 15

[388]

 --run-untagged="true" \
 --locked="false" \

When the runner is registered, it will show up in GitLab in the Runner list:

The registration process is basically the process of telling the runner where GitLab is
situated, and initiating a key exchange to secure access to GitLab. Following a successful
registration, the runner saves the configuration information in a TOML file, which looks as
follows:

concurrent = 1
 check_interval = 0

 [[runners]]
 name = "runnerhost.joustie.nl"
 url = "https://gitlab-ee.joustie.nl"
 token = "801bd1f41a3bb7a42c0b6f43e9ffc8"
 executor = "shell"
 shell = "bash"
 [runners.cache]

The shell can also be set to sh for a simple Bourne shell or powershell on Windows. On
Linux, this is usually placed in /etc/gitlab-runner/config.toml.

Installing and Configuring GitLab Runners Chapter 15

[389]

Running the nightly version
If you are feeling adventurous, you could also install the latest release, which isn't part of
any release yet. Do this at your own risk. There could still be bugs in there:

Linux:
https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-linux-386

https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-linux-amd64

https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-linux-arm

macOS:
https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-darwin-386

https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-darwin-amd64

Windows:
https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-windows-386.exe

https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-windows-amd64.exe

FreeBSD:
https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-freebsd-386

https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-freebsd-amd64

https://s3.amazonaws.com/gitlab-runner-downloads/master/
binaries/gitlab-runner-freebsd-arm

Now, we should have a runner installed and ready for use.

The easiest way to install a runner is by using a package manager running on the host
operating system. Doing a manual install allows you to run development versions or
patched versions easily because it has only one Golang binary.

https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-linux-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-darwin-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-386.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-windows-amd64.exe
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-386
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-amd64
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-runner-freebsd-arm

Installing and Configuring GitLab Runners Chapter 15

[390]

Summary
In this chapter, we showed you the basic architecture of a GitLab Runner. Then, we showed
you how to install it on several operating systems with a shell executor. On most systems,
there is a more or less automated way to do this, which also manages updates and platform
compatibility. There's also a manual way of installing the software on every system. Using
the manual method allows you to run developer versions of the runner easily. The
registration process of the runner can be done step by step or in one command.

In the next chapter, we will deploy GitLab Runner in a Docker container and also in a more
managed way in a Kubernetes cluster.

Questions
What part of GitLab does a runner connect to?1.
What additional action has to be performed on Debian-based systems to install2.
the right package?
In what language is the runner client written?3.
What is the default description that's given to a runner?4.
What command argument is used to communicate the registration token to the5.
gitlab register command?

Further reading
Hands-On Full Stack Development with Go, by Mina Andrawos: https://www.
packtpub.com/web-development/hands-full-stack-development-go

Windows 10 for Enterprise Administrators, by Jeff Stokes, Manuel Singer, and Richard
Diver: https://www.packtpub.com/in/networking-and-servers/windows-10-
enterprise-administrators

Hands-On Continuous Integration and Delivery, by Jean-Marcel Belmont: https://
www.packtpub.com/in/virtualization-and-cloud/hands-continuous-
integration-and-delivery

https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/web-development/hands-full-stack-development-go
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/networking-and-servers/windows-10-enterprise-administrators
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery

16
Using GitLab Runners with

Docker or Kubernetes
In the previous chapter, we installed a GitLab Runner with the shell executor. In this
chapter, we will take a closer look at containerized GitLab Runners. You can run a GitLab
Runner in a container in multiple ways:

With the Shell executor running in a custom-built Docker container: This is not
recommended because you are responsible for building and supporting this
custom container afterward. On the other hand, if you want to tightly control the
components inside the container and the behavior of them, then it might be a
good way to containerize the Runner. Scaling this solution also requires more
work from your side because the Runner itself only knows how to run jobs and
connect to GitLab. You will collect state (files in /tmp or elsewhere) in your
containers if they don't restart after a job, so be prepared to handle that as well.
With the Docker executor, which pulls and starts a Docker image for your job:
This is a much more scalable solution, with the added bonus of having no state.
Each build gets a pristine clean environment and starts all over again. Another
bonus is that you are able to create services for a job, which is another container
or several that are started in parallel with a container for your job. For instance,
you can start a MySQL database and it will be a linked service that is available
under the service name.
With the Kubernetes executor so that you can use a Kubernetes cluster: The
Runner can communicate with the cluster management API and ask for
resources to spin up containers. The Runners are completely stateless and when
there is a decreasing number of jobs in the queue, the number of containers is
scaled back automatically.
With the Docker executor and autoscaling enabled (Docker Machines creates
new Runners): In this configuration, the GitLab Runner controls the Docker
Machine binary. It can create new Runner containers on the fly and scale down
again if there are less jobs in the queue.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[392]

In this chapter, we are going to take a look at the basic way of running a GitLab Runner,
and how to orchestrate this using a management system such as Kubernetes. The
autoscaling executors will be part of the next chapter. The reason for this is that the
autoscaling Docker executor has a lot of options and requires more planning and system
management features to maintain.

The following topics will be covered in this chapter:

Runner client architecture
Creating your own Dockerized GitLab Runner
Using a prebuilt Docker container to deploy GitLab Runners
Using a Kubernetes cluster to spawn GitLab Runners

Technical requirements
To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with the examples that are available, from GitHub at https://github.
com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16.

The other requirements for this chapter are as follows:

Docker installed for your platform
The wget command-line download tool (https://www.gnu.org/software/wget/)
Access to the Alpine Docker image (https://hub.docker.com/_/alpine)
Access to the Python Alpine Docker image (https://hub.docker.com/r/
lgatica/python-alpine)
Access to the GitLab Runner Docker image (https://hub.docker.com/r/gitlab/
gitlab-runner)
The kubectl utility on your system (you can find installation instructions
at https://kubernetes.io/docs/tasks/tools/install-kubectl/)
Helm or Tiller (a Kubernetes utility to help you to manage clusters: https://
helm.sh/docs/using_helm/)

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter16
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/lgatica/python-alpine
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://hub.docker.com/r/gitlab/gitlab-runner
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/
https://helm.sh/docs/using_helm/

Using GitLab Runners with Docker or Kubernetes Chapter 16

[393]

Runner client architecture
If you utilize a GitLab Runner with Docker, the resulting architecture differs from the one
in the previous chapter in one way. The Runner binary is executed from inside a Docker
container instead of directly on a host system. The following diagram shows this
architecture:

The image is the same whether you create a container yourself or you use an existing
container from the internet.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[394]

If you are going to orchestrate your GitLab Runners using Kubernetes, the architecture is
going to look a bit different. You can see that, inside the cluster, a GitLab Runner with the
Kubernetes architecture can talk to the cluster's Kubernetes API to scale up the number of
Runner instances:

The two architectures both use Docker containers as the core unit of operation. The first
needs more management in the field of scaling, upgrading the software, and setting up a
network. Much of that has already been arranged with Kubernetes.

Now, we know about the difference between these architectures and that a Runner is
deployed without a container, but what does this mean in practice? We will explore this in
the following sections.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[395]

Creating your own Dockerized GitLab
Runner
Most people will use prebuilt Docker containers, but there are reasons to build your own.
Maybe you have special requirements when building your software that aren't installed in
the default Docker images that are available or maybe it's just not possible because of
security restrictions. A lot of default images have software included that contain
vulnerabilities.

Let's create our own Dockerized GitLab Runner for the project from Chapter 10, Create
Your Product, Verify, and Package it, that is, the event manager documentation, using a
Dockerfile. You will find our first attempt in the next section.

Let me stress that this Dockerfile is purely for demonstration purposes.
We don't recommend building containers like this for production-like
systems or even your own development systems. It's being used here to
show you how easily you can wrap commands and services in containers.

The first line of the file is as follows:

FROM alpine:3.7

This is the base image we used for the container. It is from the Alpine Linux distribution,
which contains only the bare minimum to run programs. It is only 4.41 MB and, when
using container security scanners such as Clair (https://github.com/coreos/clair), it
doesn't show vulnerabilities. You can also build containers from scratch (see https://
ericchiang.github.io/post/containers-from-scratch/), but this is a very tedious task.
The Alpine Linux image is safe enough and is ready to go immediately.

In the following lines, we install some basic packages:

RUN apk add --no-cache \
 ca-certificates \
 git \
 wget

https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/

Using GitLab Runners with Docker or Kubernetes Chapter 16

[396]

We need CA certificates because we need the GitLab Runner client to connect to our HTTPS
endpoint, where a TLS handshake will take place. The Git binary is also necessary to clone
code from a project.

Finally, the last command that is set to run in the creation sequence of the container is used
to download, execute, and register the GitLab Runner with our GitLab server:

RUN wget
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-run
ner-linux-386 && chmod +x gitlab-runner-linux-386 && \
 ./gitlab-runner-linux-386 register \
 --non-interactive \
 --url "https://gitlab-ee.joustie.nl/" \
 --registration-token "xxxxxxx" \
 --executor "shell" \
 --shell "sh" \
 --description "dockerized shell-runner" \
 --tag-list "docker" \
 --run-untagged="true" \
 --locked="false"

For this example's sake, we have hardcoded all of the arguments in the Dockerfile to show
you how easy it is to Dockerize your command (don't do this normally):

non-interactive: Without it, there would be a dialog that takes you through
the configuration settings.
url: This is the URL of our GitLab server.
registration-token: This is the token of a Runner from the project, group, or
GitLab instance's scope.
executor: This specifies which kind of Runner to implement. We chose to use
the shell executor.
shell: This specifies which kind of shell to implement; this could be bash, sh, or
powershell on Windows. We chose sh as it is the most basic one.
description: This is what description you will see in GitLab.
tag-list: We can put tags on Runners for easier management in GitLab. In this
case, we have used docker.
run-untagged: We set it to true, which means that any job with or without tags
can be run on this Runner.
locked: The Runner isn't tied to a project.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[397]

The next step is to build the Docker container with the docker build command (we
specify –no-cache so that we can rebuild every time). The output is as follows, and we will
go through it step by step. The first part is pulling the Alpine base image:

$ docker build --no-cache -t dockerrunner .
 Sending build context to Docker daemon 2.56kB
 Step 1/4 : FROM alpine:3.9
 3.9: Pulling from library/alpine
 Digest:
sha256:769fddc7cc2f0a1c35abb2f91432e8beecf83916c421420e6a6da9f8975464b6
 Status: Downloaded newer image for alpine:3.9
 ---> 055936d39205

The first Docker layer has been created. The second step is adding the necessary packages:

Step 2/4 : RUN apk add --no-cache ca-certificates git openssl tzdata
wget
 ---> Running in 0ab19e2eef86
 fetch
http://dl-cdn.alpinelinux.org/alpine/v3.9/main/x86_64/APKINDEX.tar.gz
 fetch
http://dl-cdn.alpinelinux.org/alpine/v3.9/community/x86_64/APKINDEX.tar.gz
 (1/8) Installing ca-certificates (20190108-r0)
 (2/8) Installing nghttp2-libs (1.35.1-r0)
 (3/8) Installing libssh2 (1.8.2-r0)
 (4/8) Installing libcurl (7.64.0-r1)
 (5/8) Installing expat (2.2.6-r0)
 (6/8) Installing pcre2 (10.32-r1)
 (7/8) Installing git (2.20.1-r0)
 (8/8) Installing wget (1.20.3-r0)
 Executing busybox-1.29.3-r10.trigger
 Executing ca-certificates-20190108-r0.trigger
 OK: 21 MiB in 22 packages
 Removing intermediate container 0ab19e2eef86
 ---> 17ab7c7dd1b9

The previous code downloaded the packages we specified, as well as some dependencies.
This is still a modest amount of packages. In the following build step, the GitLab Runner
binary is downloaded:

Step 3/4 : RUN wget
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-run
ner-linux-386 && chmod +x gitlab-runner-linux-386 && ./gitlab-runner-
linux-386 register --non-interactive --url "https://gitlab-ee.joustie.nl/"
--registration-token "xxxx" --executor "shell" --shell "sh" --description
"dockerized shell-runner" --tag-list "docker" --run-untagged="true" --
locked="false"
 ---> Running in d90d35beaa37

Using GitLab Runners with Docker or Kubernetes Chapter 16

[398]

 --2019-05-22 21:05:18--
https://s3.amazonaws.com/gitlab-runner-downloads/master/binaries/gitlab-run
ner-linux-386
 Resolving s3.amazonaws.com... 52.216.18.115
 Connecting to s3.amazonaws.com|52.216.18.115|:443... connected.
 HTTP request sent, awaiting response... 200 OK

 2019-05-22 19:46:24 (2.22 MB/s) - 'gitlab-runner-linux-386' saved
[25824256/25824256]

The next step is the execution of the Runner:

Runtime platform arch=386 os=linux pid=1 revision=5159dcdb
version=11.12.0~beta.1484.g5159dcdb
Running in system-mode.

Then, we need to register it:

Registering runner... succeeded runner=Vh6hpU1D
 Runner registered successfully. Feel free to start it, but if it's running
already the config should be automatically reloaded!
 Removing intermediate container b55a2ae6998a
 ---> be4317ad95b0

The binary was successfully downloaded, and the registration was successful; a specific
Runner token was created and is now part of the Docker image. The final part of the build
sets the entry point for the instantiation of a Docker instance with this image:

Step 4/4 : ENTRYPOINT ["./gitlab-runner-linux-386","run"]
 ---> Running in 8b54b77030bc
 Removing intermediate container 8b54b77030bc
 ---> be206c4c268c
 Successfully built be206c4c268c
 Successfully tagged dockerrunner:latest

It automatically tagged the image with latest. The image is now available on the machine
where its build was executed. You can view it by using the following command:

$ docker images
 ...

Using GitLab Runners with Docker or Kubernetes Chapter 16

[399]

If you go to GitLab and open the Runner list in the administrative settings menu, a new
Runner will appear there:

Now, it's time to start the Runner and try to build the eventmanager-documentation
project. You can start the Runner in the foreground using the following command:

$ docker run -ti dockerrunner

The following output should appear after a brief pause:

Runtime platform arch=386 os=linux pid=1 revision=5159dcdb
version=11.12.0~beta.1484.g5159dcdb
 Starting multi-runner from /etc/gitlab-runner/config.toml ... builds=0
 Running in system-mode.

 Configuration loaded builds=0
 listen_address not defined, metrics & debug endpoints disabled builds=0
 [session_server].listen_address not defined, session endpoints disabled
builds=0

As you can see, it has successfully loaded a configuration that was saved in the container
during the registration phase. It also mentions the fact that it didn't load a metrics and
debug session server, so this Runner exposes no service of any kind to the outside world. It
has connected to the GitLab server and is now waiting for commands.

When we try to run the eventmanager-documentation project pipeline for the master
branch, it will spin off a build job to the new GitLab Runner:

Checking for jobs... received job=675
repo_url=https://gitlab-ee.joustie.nl/marketing/eventmanager-documentation.
git runner=LT7jz43c
 WARNING: Job failed: exit status 1 duration=347.5203ms
job=675 project=10 runner=LT7jz43c
 ERROR: Failed to process runner builds=0 error=exit
status 1 executor=shell runner=LT7jz43c

Using GitLab Runners with Docker or Kubernetes Chapter 16

[400]

Unfortunately, it's failed to build the project. If we look at the job log, we get the following
output:

It's quite clear why the job failed. We created a basic GitLab Runner container without
support for the Python language. That is why it complains about the Python Package
Manager (PIP) not being found. We need Python to install the Amazon Web Services
Command-Line Interface (AWS CLI) utility, which is defined in the .gitlab-ci.yml file
for this project.

This is easy to fix. We can change the first line in the Dockerfile to the following:

FROM python:3.7-alpine

This will change the base image of the Docker container to a version of Linux with Python
included. Now, you can rebuild the image using the exact same preceding command line
and starting the container again.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[401]

If we run the pipeline for this project again, the job will succeed:

You can create much more elaborate container images, but this was a basic way to
containerize a Runner.

In this section, we have created our own GitLab Runner container and registered it with a
GitLab instance. In the next section, we will use a prebuilt image that GitLab provides from
their site.

Using a prebuilt Docker container to deploy
GitLab Runners
There are two basic flavors of prebuilt Docker containers available (Ubuntu-based and
Alpine-based). The big difference between them is that the Alpine one is much smaller and
has a better security track. You can find it here: https://gitlab.com/gitlaborg/
gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile.

You can run the container with arguments that will be passed through to the GitLab
Runner binary that is started inside the container. This also enables easier runtime
registration of the Runner with a GitLab instance. Remember from the Creating your own
Dockerized GitLab Runner section that we baked the registration of the Runner inside the
image. You can find the appropriate images on Docker Hub: https://hub.docker.com/r/
gitlab/gitlab-runner/tags.

https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://gitlab.com/gitlaborg/gitlabrunner/blob/master/dockerfiles/alpine/Dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags
https://hub.docker.com/r/gitlab/gitlab-runner/tags

Using GitLab Runners with Docker or Kubernetes Chapter 16

[402]

Just start a container using the following command. It will automatically download the
right image:

$ mkdir /Users/shared/gitlab-runner && mkdir /Users/shared/gitlab-
runner/config
 $ docker run -d --name gitlab-runner -v /Users/shared/gitlab-
runner/config:/etc/gitlab-runner \
 -v /var/run/docker.sock:/var/run/docker.sock \
 gitlab/gitlab-runner:latest

You can check the logs of the running container with the following command:

$ dockers logs -f gitlab-runner
 ERROR: Failed to load config stat /etc/gitlab-runner/config.toml: no such
file or directory builds=0

The preceding output means that the gitlab-runner software is running inside the
container, but it isn't registered yet.

The next step is to register it and save the configuration file in the container (in the
configuration volume you specified with -v):

docker run --rm -v /User/shared/gitlab-runner/config:/etc/gitlab-runner
gitlab/gitlab-runner register \
 --non-interactive \
 --executor "docker" \
 --docker-image python:3.7-alpine \
 --url "https://gitlab-ee.joustie.nl/" \
 --run-untagged="true" \
 --registration-token "xxx" \
 --description "docker-runner" \
 --tag-list "eventmanager" \
 --locked="false"

If you examine the container logs (maybe you left the window open) after this, a message
should appear:

...
 Configuration loaded builds=0

This means that the Runner now has a valid configuration and is online with GitLab.

If we try to trigger the pipeline for the eventmanager-documentation project again, a job
will be run:

Checking for jobs... received job=660
repo_url=https://gitlab-ee.joustie.nl/marketing/eventmanager-documentation.
git runner=8cX8wWCr

Using GitLab Runners with Docker or Kubernetes Chapter 16

[403]

In GitLab, you will see this job running:

In the log file of the container, a message will appear if the job succeeds:

Job succeeded duration=1m17.7055922s
job=660 project=10 runner=8cX8wWCr

This is also visible in the job log in GitLab:

This concludes the two ways of running Docker locally with relatively simple containers:

Building your own container
Using a prebuilt image

How can you manage this if you have massive amounts of build jobs? You can use an
orchestration system such as Kubernetes, which is the subject of the next section.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[404]

Using a Kubernetes cluster to spawn GitLab
Runners
The best method of deploying a GitLab Runner container into a Kubernetes cluster is by
using the GitLab Runner Helm chart.

It contains all of the configuration information that's run using the GitLab Runner
Kubernetes executor. For each new job it receives from GitLab CI/CD, it will provision a
new pod within the specified namespace to run it.

You can run the install using the following command:

$ helm install --namespace gitlab --name gitlabrunner -f values.yaml
gitlab/gitlab-runner

This command can take some time to complete. After some time, you will receive the
following output:

NAME: gitlabrunner
 LAST DEPLOYED: Tue May 21 21:11:15 2019
 NAMESPACE: gitlab
 STATUS: DEPLOYED

 RESOURCES:
 ==> v1/ConfigMap
 NAME DATA AGE
 gitlabrunner-gitlab-runner 5 0s

 ...

This shows quite a bit of output, but the important part is that the status of the Helm chart
is DEPLOYED.

The GitLab Runner should now be registered to the GitLab instance reachable at https://
gitlab-ee.joustie.nl/.

We have run this deployment on my local Kubernetes cluster.

You can find out which Kubernetes pods are running by using the following command:

$ kubectl get pods -n gitlab
 NAME READY STATUS RESTARTS
AGE
 gitlabrunner-gitlab-runner-787dddf5b5-58fzw 1/1 Running 0
2m

https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/
https://gitlab-ee.joustie.nl/

Using GitLab Runners with Docker or Kubernetes Chapter 16

[405]

As you can see, the Runner was deployed in Kubernetes in the Runner list of the
administrative section of GitLab:

We can run the pipeline for the eventmanager-documentation project that was
introduced in Chapter 10, Create Your Product, Verifying it, and Packaging it, to demonstrate
the fact that multiple Runners are spawned on the Kubernetes cluster. Here is the pipeline
view in GitLab showing multiple parallel jobs:

Using GitLab Runners with Docker or Kubernetes Chapter 16

[406]

If you look into individual jobs, you will see that it takes some time to spin up the new
Runner resources in the cluster. Until it is ready, the job is polled:

After some time, a Runner is spawned in the Kubernetes cluster and the jobs are dispatched
to it:

Using GitLab Runners with Docker or Kubernetes Chapter 16

[407]

You can view a list of pods on the Kubernetes cluster and see that many pods were created:

After some time, you will see that some parallel started jobs are finishing (in green):

In the end, all of the jobs will succeed and the pipeline will be passed:

After this job, the number of GitLab Runners is reduced once more.

Using GitLab Runners with Docker or Kubernetes Chapter 16

[408]

By doing this, we've shown you how to use Kubernetes to manage containers and how to
handle scaling on the fly.

Summary
In this chapter, we showed you how to run GitLab Runners in containers. First, we looked
at a quick way to containerize an existing Runner. Then, we showed you how to use
existing Docker images that are provided by GitLab itself. Afterward, we talked about a
way to manage a greater amount of containers and how you can handle this more
economically with Kubernetes.

In the next chapter, we will discuss another way to scale Runners: with autoscaling.

Questions
What are the advantages of the Docker executor?1.
What is the basic build command for a Docker container?2.
Which file contains the building instructions for a container?3.
What is the name of a small Linux container distribution?4.
What tool is used to configure a Kubernetes cluster with much more ease?5.
How can you set the number of Runners to spawn by default in Kubernetes?6.

Further reading
Kubernetes Course from a DevOps Guru (Kubernetes and Docker), by Tao W, James Lee,
and Basit Mustafa: https://www.packtpub.com/application-development/
kubernetes-course-devops-guru-kubernetes-docker

Learn Docker – Fundamentals of Docker 18.x, by Gabriel N. Schenker: https://www.
packtpub.com/in/networking-and-servers/learn-docker-fundamentals-
docker-18x

Hands-On Continuous Integration and Delivery, by Jean-Marcel Belmont: https://
www.packtpub.com/in/virtualization-and-cloud/hands-continuous-
integration-and-delivery

Containers from Scratch: https://ericchiang.github.io/post/containers-
from-scratch/

https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/application-development/kubernetes-course-devops-guru-kubernetes-docker
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/networking-and-servers/learn-docker-fundamentals-docker-18x
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/in/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/

17
Autoscaling GitLab CI Runners

In the previous chapter, we were able to scale GitLab Runners using the Kubernetes
executor. Depending on your requirements of how many jobs should be able to run
concurrently, the number of available Runners in a Kubernetes cluster can go up or down.
Having a big number of runners available can be very costly. Even if they were to be turned
off, they would still cost money. It's much better to have them created on demand and
destroyed when they are no longer needed.

There is another GitLab Runner executor that can behave in this elastic way and
dynamically add or remove Runner instances, and this is known as the Docker Machine
executor. We will show you what this looks like from an architectural point of view, explain
some of its settings, and provide you with some examples of running the Docker Machine
executor with the VirtualBox driver and the Amazon EC2 driver.

In this chapter, we will cover the following topics:

Runner client architecture
Setting up the environment
Configuring the GitLab Runner

Autoscaling GitLab CI Runners Chapter 17

[410]

Technical requirements
You can find the code file for this chapter in this book's GitHub repository at https://
github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17.

The other requirements for this chapter are as follows:

Docker Machine is automatically installed with the Docker software distributions
for macOS or Windows. If you don't have it, you can find it at the following
link: https://github.com/docker/machine/releases/.
You need a Linux bastion host with up-to-date patches.
Access to the Docker registry image is required (https://hub.docker.com/_/
registry).
Access to the MinIO Docker images is required (https://hub.docker.com/r/
minio/minio).
You need VirtualBox installed on the bastion host (http://www.virtualbox.org).
You need an AWS account, which will be used for scaling with the EC2
infrastructure.

Runner client architecture
First, we will describe the architecture of this solution. Expanding on the architecture that
was put forward in previous chapters, we have a GitLab instance with a GitLab CI that
receives a request from a GitLab Runner that's running a dedicated host. This can be either
a local virtual machine or an instance in the cloud. The Runner is equipped with the Docker
Machine program.

The Docker Machine executor type is basically a GitLab Runner that executes Docker
Machine commands. With Docker Machine, you can create virtual hosts that run the
Docker Engine. You can control these hosts with it and create new virtual machines with
Docker Engine installed, which in turn can run GitLab Runner container instances. This is
explained in the following diagram:

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
https://hub.docker.com/r/minio/minio
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org

Autoscaling GitLab CI Runners Chapter 17

[411]

Autoscaling GitLab CI Runners Chapter 17

[412]

In the preceding diagram, you can see the Docker Machine component and that it can
instantiate multiple runners. There are also two other components in the diagram called a
Caching server (which can store dependencies for builds) and the Docker registry
proxy (which can cache Docker images from places such as the Docker Hub). Both
components will be explained in more detail in the Configuring the Runner section.

Setting up the environment
To enable a Docker Machine-based Runner, the following steps have to be performed:

Prepare a bastion host as the host where Docker will create new machines.1.
Deploy the GitLab Runner software on this machine.2.
Install Docker Machine.3.

Preparing a bastion host
For this example, we chose my macOS-based machine. This can be a Linux virtual machine
or your laptop—any machine that can run a recent version of the GitLab Runner software.
The only function this host will have is executing the GitLab Runner software with the
Docker Machine executor. It should be tightly secured as a bastion to withstand attacks
since it can control multiple Runner instances through the docker-machine commands,
and that makes it a target.

Deploying the GitLab Runner software
On macOS, we use the Homebrew package manager. To install the Runner software, you
can execute the following command:

brew install gitlab-runner

After that, you can register the Runner, as shown in Chapter 15, Installing and
Configuring GitLab Runners:

gitlab-runner register

Choose the Docker Machine executor when you're asked for an executor
in the registration process.

Autoscaling GitLab CI Runners Chapter 17

[413]

After the Runner has been registered, don't start it just yet—we need to edit the
config.toml configuration file that's located in ~/.gitlab-runner/config.toml on
macOS. We will do that in the Configuring the Runner section.

First, though, we need to install the Docker Machine binary before we configure the Runner
in order to start the Docker Machine executor.

Installing Docker Machine
If you've installed Docker on macOS or on Windows, you will already have the binary
installed. You can test the installation by using the following command:

$ docker-machine -v
docker-machine version 0.16.1, build cce350d7

You can create new Docker hosts with this tool. They can be created on your local machine
or network, but also in the cloud with the help of big providers such as Microsoft, Amazon,
and Google. Docker Machine has plugins for many systems. The following is a list of them:

All VMware products
Virtualbox
Microsoft Hyper-V
DigitalOcean
Amazon Web Services (EC2)
Microsoft Azure
Exoscale
Google Computing Engine
Scaleway
IBM Softlayer
Rackspace
OpenStack
Linode

If you are running Linux, you can download and install Docker Machine from https://
github.com/docker/machine/releases/.

https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/
https://github.com/docker/machine/releases/

Autoscaling GitLab CI Runners Chapter 17

[414]

If you look at the Dockerfile of GitLab Runner on https://hub.docker.com/r/gitlab/
gitlab-runner/dockerfile, which is used to build the default container, there is a line that
says the following:

wget -q
https://github.com/docker/machine/releases/download/v0.7.0/docker-machine-L
inux-x86_64 -O /usr/bin/docker-machine && \
 chmod +x /usr/bin/docker-machine

The Docker Machine binary is installed directly in this container image and is used by the
GitLab Runner software. When you have verified that the Docker Machine binary is
available, the next step is to configure the Runner.

Configuring the Runner
Now that you've installed the Runner software and Docker Machine, it's time to edit the
Runner configuration file. On macOS, you can find the config.toml file in ~/.gitlab-
runner/config.toml. It is in your home directory because the Runner runs in the user
space on macOS.

Now, we will take a look at some of the configuration options you can specify in the
config.toml file that are specifically for the autoscaling Runner.

Off-peak time mode configuration
Most organizations don't have the need for 24/7 capacity since they don't need to use CI
runners all of the time. The most work is done during work hours in a regular work week,
and at the weekends, there's less of a need for software to be built. In this situation, it makes
no sense to have machines sitting idle, waiting for jobs. By specifying a schedule with
the OffPeakPeriods option, you can specify these times of lower productivity. During
those times, the parameters to control the creation of the runner's capacity are different.
You specify them by putting OffPeak in front of it. Therefore, IdleCount becomes
OffpeakIdleCount, IdleTime becomes OffPeakIdletime, and so on. The functionality
of the algorithm stays the same.

https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile
https://hub.docker.com/r/gitlab/gitlab-runner/dockerfile

Autoscaling GitLab CI Runners Chapter 17

[415]

In the following schedule (which is common), you can see off-peak times on weekdays
during the night, evening, and the entire weekend:

[runners.machine]
 OffPeakPeriods = [
 "* * 0-9,18-23 * * mon-fri *",
 "* * * * * sat,sun *"
]

Distributed runners caching
GitLab Runners have a built-in caching mechanism. It can be set on a global level, as well as
for an individual project.

Setting the cache globally
You can set a path in your config.toml configuration file so that it will cache every job:

[runners.cache]
 Path = "/node_modules"

Setting the cache at the project level
You can set which path is to be cached in the .gitlab-ci.yml file for the project itself:

 cache:
 paths:
 - node_modules/

The preceding settings apply to the context of just a single Runner host. If we use
autoscaling, we need a way to have this cache shared by all of the runners to help gain
speed. We can use external storage such as an S3 bucket to act as a cache. We just have to
add the [runners.cache.s3] part to the config.toml file of the runners:

 [runners.cache.s3]
 ServerAddress = "s3-website-us-east-1.amazonaws.com"
 BucketName = "joustie-gitlab-runner-cache"
 AccessKey = "xxx"
 SecretKey= "xxxx"
 Insecure = false

Autoscaling GitLab CI Runners Chapter 17

[416]

If this is your first time doing this, it will try to get the cache.zip file from the S3 storage
bucket. However, if there is no file, it will complain and continue:

Checking cache for default...
 FATAL: file does not exist

After the build, which populates the node_modules directory with dependencies, the
contents of that directory is zipped and sent to the S3 storage bucket:

Creating cache default...
 node_modules/: found 5728 matching files
 Uploading cache.zip to
https://joustie-gitlab-runner-cache.s3.amazonaws.com/project/14/default
 Created cache
 Job succeeded

If we retry the job, we will find that there's now a cache.zip file in S3, and it will be used
instead of downloading all of those node dependencies again:

Checking cache for default...
 Downloading cache.zip from
https://joustie-gitlab-runner-cache.s3.amazonaws.com/project/14/default
 Successfully extracted cache

Distributed container registry mirroring
Another situation that can slow down building considerably is that the runners
continuously download Docker containers from the internet. It is a much better idea to
create a proxy for that. In runners.machine, you can specify which engine-registry-
mirror should be used. If this is used on your local network, this saves a lot of traffic.
Here, you see the section as I used it in our example project:

 MachineOptions = [
 "engine-registry-mirror=http://192.168.1.10:6000"
]

In the most basic way, the Docker Machine executor uses docker-machine to spawn new
instances of the GitLab Runner container.

Autoscaling GitLab CI Runners Chapter 17

[417]

You can combine this with other features, such as shared caching and using a dedicate
container registry to facilitate large amounts of instances.

If you enable these settings for your runner, you need to deploy a caching server and a
registry mirroring service, which we will show you in the next section.

Installing and running a proxy container registry
and a caching server
The two extra machines are necessary to help with performance when your plan is to
deploy an entire elastic fleet of GitLab Runners. If you have more than five runners that can
operate simultaneously, you will already gain an advantage when running a registry proxy
and a caching server. An extra feature you get is that a bit of high availability is introduced
in your architecture: you are able to do builds when your internet connection is flaky or
offline.

For a proxy container registry, you need to have a proxy that implements the Docker
Registry HTTP API V2, which we will install in the next section.

Proxy container registry
There is a convenient Docker container readily available to fulfill this role. You can start
this Docker container immediately by using the following code:

docker run -d -p 6000:5000 -e
REGISTRY_PROXY_REMOTEURL=https://registry-1.docker.io --name runner-
registry registry:2

If you create such a registry proxy and check the log file when the runners start a job, you
will find that the proxy serves the Runner by fetching and caching images:

$ docker logs registry -f

172.17.0.1 - - [25/May/2019:14:28:40 +0000] "GET /v2/ HTTP/1.1" 200 2 ""
"docker/18.09.6 go/go1.10.8 git-commit/481bc77 kernel/4.14.116-boot2docker
os/linux arch/amd64 UpstreamClient(Go-http-client/1.1)"
...

There isn't much to configure, but you can find more information
here: https://hub.docker.com/_/registry.

https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry

Autoscaling GitLab CI Runners Chapter 17

[418]

Caching server
There are two options for creating a caching server. You can either get an S3 bucket in
Amazon or another cloud provider or run an object storage service yourself such as MinIO,
which can be found at https://min.io.

Creating an S3 bucket in Amazon Web Services
Log in to the Amazon Web Services console and find the S3 dashboard via Services | S3.
Click on Create bucket:

We have named it joustie-gitlab-runner-cache and left the rest as the default:

https://min.io
https://min.io
https://min.io
https://min.io
https://min.io
https://min.io
https://min.io

Autoscaling GitLab CI Runners Chapter 17

[419]

Creating your own MinIO server
This is also conveniently available as a Docker image. It is recommended to run this on a
dedicated host because the storage that's involved can grow quite large, and you don't want
this service to take down any other service that is running on that host.

Run the container with the following command:

docker run -it -p 9005:9000 -v ~/.minio:/root/.minio -v /s3:/export --name
caching-server minio/minio:latest server /export

Take note of the /s3 volume that is mounted in the container, which will serve as the
directory that stores the cached objects.

The output of the preceding command will appear after some time:

latest: Pulling from minio/minio
 e7c96db7181b: Already exists
 94d4d681d0f2: Pull complete
 664c3f016f88: Pull complete
 b3235cce6961: Pull complete
Digest:sha256:244c711462a69303c0aa4f8d7943ba8b36dd55246e29da44c6653e39eaa42
e70
 Status: Downloaded newer image for minio/minio:latest

The container image will be downloaded.

After that, the MinIO container will start and report the location it uses, as well
as AccesKey and SecretKey, which are to be used by the runners:

Endpoint: http://172.17.0.4:9000 http://127.0.0.1:9000
 AccessKey: xxx
 SecretKey: xxx

We will demonstrate the usage of the cache by building a Node.js example project. It
contains a node_modules directory, which we specify as a cached location in the .gitlab-
ci.yml file.

When you build the Node.js project using a GitLab Runner, it will report its use of the cache
in the Runner job log file:

node_modules/: found 5728 matching files
 Uploading cache.zip to
http://192.168.178.82:9005/joustie-gitlab-runner-cache/project/14/default
 Created cache
 Job succeeded

Autoscaling GitLab CI Runners Chapter 17

[420]

When we looked on the dedicated machine where the MinIO container was running, we
found the following directory structure when we typed in the tree command in /s3 (this
is the directory that's used by the MinIO Docker container to store objects):

$tree
 .
 └── joustie-gitlab-runner-cache
 └── project
 └── 14
 └── default

 3 directories, 1 file

We ran the GitLab Runner job again, which found cache.zip in the MinIO bucket.

This was an example of using a single runner. However, you may want to use these options
to scale your Runner instances. Let's look at this in the next section.

Scaling your runners
In the previous section, we configured the software and prepared our environment so that
we could scale up and down the number of runners while also providing some shared
services like a registry proxy and a caching server. Now, let's look at two examples. We will
run jobs on a Runner that's been configured to use VirtualBox and one that's been
configured to use Amazon Web Services. VirtualBox is the open source virtualization
solution from Oracle and can be found at https://www.virtualbox.org/.

Almost all of the Runner configuration files (the config.toml file) can be identical; we
only change the machine driver part. Let's start with the VirtualBox option.

Using Docker Machines with a local VirtualBox instance
We start with the local gitLab-runner service with the config file for VirtualBox:

brew services start gitlab-runner

After a few seconds, we will see that VirtualBox spins up a number of virtual machines:

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Autoscaling GitLab CI Runners Chapter 17

[421]

When we started a build of the event manager project in Chapter 10, Create Your Product,
Verify, and Package it, we saw that it needs more runners (five parallel jobs) to run the
pipeline. Therefore, we will start more machines:

When the build has finished, after IdleTime has gone by, the number of machines will be
reduced:

The VirtualBox driver is an excellent choice if you already have some servers with
VirtualBox installed.

Using docker machines that have been created on
Amazon Web Services (EC2)
If you change the machine driver from VirtualBox to Amazon EC2 and restart the runners,
Docker Machine will spin up runners in Amazon if you have your credentials saved in your
home directory or inserted in your shell environment. If not, then you will need to save
them in the config.toml file.

Autoscaling GitLab CI Runners Chapter 17

[422]

After some time, the runners will appear in the EC2 web interface:

When those runners are started, you can change your Docker context to the one in Amazon
so that you can run Docker commands and control those machines:

eval $(docker-machine env runner-fatr91wm-elastic-
runner-1558647049-87941946)

When you access the logs of the Runner on your bastion host, you will see that it will scale
down the number of machines to IdleCount:

$docker logs runner-fatr91wm
gitlab-runner[69056]: WARNING: Removing machine : Too many idle machines

If we start the same job from earlier (event manager project), we will see that many jobs are
queued following the start of the build pipeline:

Autoscaling GitLab CI Runners Chapter 17

[423]

The docker-machine ls command will show us that many EC2 instances are started on
AWS by the autoscaling GitLab Runner:

$ docker-machine ls
 NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
 runner-fatr91wm-elastic-runner-1558702358-7e149fd0 * amazonec2 Running
tcp://3.86.53.66:2376 v18.09.6
 runner-fatr91wm-elastic-runner-1558702588-f8114aa8 - amazonec2 Running
tcp://34.207.177.20:2376
 runner-fatr91wm-elastic-runner-1558702591-6e1b6fd9 - amazonec2 Running
tcp://34.235.132.231:2376
 runner-fatr91wm-elastic-runner-1558702594-dd75b49b - amazonec2 Running
tcp://35.175.240.226:2376

You can also view new Runner instances in the AWS web console:

After successfully completing some of the jobs in the pipeline, the Runner will scale back
down again:

As you can see, it's quite simple to change the Docker Machine driver in the Runner
configuration file and get the same behavior. The Runner scaled up virtual machines in
VirtualBox are used to run Docker containers, as well as Amazon Web Services.

Summary
In this chapter, we explained the autoscaling feature of GitLab Runners. Like in Kubernetes,
it gives you the option of creating Runner instances on demand and scaling back in times of
less need. Under the hood, it uses Docker Machine to manage these replicas. There are
several drivers available that instantly allow runners to be created on a big list of platforms.

In the next chapter, we will take a look at the options for monitoring all of these instances.

Autoscaling GitLab CI Runners Chapter 17

[424]

Questions
What Docker feature is used by the docker-machine executor?1.
What additional servers are recommended when you use autoscaling?2.
In what file is the runner's distributed cache saved?3.
What is the name of the object storage that was used in this chapter?4.
What is the name of the configuration file of a GitLab Runner?5.
What is the name of the Docker image that's used as a registry cache?6.

Further reading
Getting Started with Containerization, by Gabriel N. Schenker, Hideto Saito, Hui-
Chuan Chloe Lee, and Ke-Jou Carol Hsu: https://www.packtpub.com/in/
virtualization-and-cloud/getting-started-containerization

Mastering Docker – Third Edition, by Russ McKendrick and Scott Gallagher: https://
www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-
edition

Getting Started with Oracle VM VirtualBox, by Pradyumna Dash: https://www.
packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-
virtualbox

Hands-On AWS System Administration, by Glauber Gallego, Daniel Stori, and Satyajit
Das: https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-
system-administration

https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-containerization
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/getting-started-oracle-vm-virtualbox
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration
https://www.packtpub.com/in/virtualization-and-cloud/hands-aws-system-administration

18
Monitoring CI Metrics

In this chapter, we will show you how to configure GitLab and its Runners to expose
service metrics. These statistics are then collected by a system that specializes in data with a
time dimension. GitLab uses Prometheus to do this and so will we.

Prometheus also provides the Alertmanager application, where you can define alert rules
that trigger customizable actions, such as sending a mail or triggering a webhook, as
described in Chapter 13, Integrating GitLab with CI/CD Tools. You can then either silence or
deal with the alert. We will provide an example of how you can use this to enable an alert
when some threshold you set is breached and the GitLab Runner is malfunctioning or not
doing what you expect it to do.

In this chapter, we will cover the following topics:

Enabling monitoring for Runners
Enabling the GitLab Runner configuration file
Runner business logic metrics
General processing metrics

Monitoring CI Metrics Chapter 18

[426]

Technical requirements
For managing omnibus installation, there is one central configuration file, called
gitlab.rb. You need to create it or copy an example. There is a template available
at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-
config-template/gitlab.rb.template. It is not updated after upgrades. In large parts of
this chapter, we will quote and discuss parts of this file. Furthermore, we will use code
examples from the GitHub repository that accompanies this book and you will need
Prometheus and the Alertmanager software to run the samples:

Code examples (https://github.com/PacktPublishing/Mastering-GitLab-12).
Prometheus monitoring server (https://prometheus.io).
Prometheus Alertmanager (https://prometheus.io/docs/alerting/
alertmanager/).
There are also containerized versions (find them with Docker by searching
Prometheus):

Alertmanager: https://hub.docker.com/r/prom/alertmanager/

Prometheus: https://hub.docker.com/r/prom/prometheus/

You can find the code file for this chapter in this book's GitHub repository at https://
github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18.

Enabling monitoring for Runners
The GitLab omnibus installation package supports defining several monitoring
components. At the time of writing, it does not have a built-in way to deploy GitLab
Runners. You can deploy Runners with the Kubernetes GitLab Runner helm chart and
monitor those, but for Runners that you created yourself, you are responsible for enabling
the monitoring of them. What do you achieve when monitoring is enabled? Well, especially
in an autoscaling environment, monitoring can keep you informed about how your fleet of
Runners is doing. Monitoring can give you some insights into how your resources are used.
The metrics are stored historically, so you can notice trends after some time.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://github.com/PacktPublishing/Mastering-GitLab-12
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter17

Monitoring CI Metrics Chapter 18

[427]

The following is a high-level example of a monitoring setup for the architecture we created
in the previous chapter. We have a GitLab instance with continuous integration (CI)
enabled on the left-hand side:

Monitoring CI Metrics Chapter 18

[428]

There is a GitLab Runner instance using a Docker Machine executor that can spawn GitLab
Runner containers. The driver that is used can be of any type that Docker Machine
supports. We used Amazon and VirtualBox to create a small-scale infrastructure that
always has one idle Runner and scales up when there are more jobs in the queue. In this
chapter, we'll talk about an example where we start up a separate Prometheus monitoring
Docker container, and then make that monitoring application scrape the metrics that are
generated by the GitLab Runner. The Prometheus monitoring system can also send alerts
when certain thresholds are reached. There is a separate binary for this (the Alertmanager)
and we'll choose to start it in a separated Docker container. It can also be manually installed
on a dedicated server.

The preceding information is about the basic monitoring setup with alerting, which will
give you more insight into the metrics of your GitLab Runners.

Editing the GitLab Runner configuration file
First, we have to configure the Runner to expose information, which is quite easy to do. The
config.toml file, which resides at ~/.gitlab.runner on my system (macOS), has to be
edited. We can enable the built-in server to serve information by adding a line
with listen_address to this file, as shown in the following code block:

listen_address = ":9252"

After saving this file, we must restart our Runner with the following command (on macOS
and a Homebrew installed Runner):

$ brew services restart gitlab-runner

Monitoring CI Metrics Chapter 18

[429]

On Linux or on a bare macOS installation, we can restart the Runner via the following
command:

$ sudo killall -SIGHUP gitlab-runner

We can view the exposed information by opening the URL where it is running (in my
case, http://192.168.178.82:9252), and then appending the metrics path (/metrics):

Monitoring CI Metrics Chapter 18

[430]

Now that we have exposed this information, we want to capture it in a database that checks
the data every X seconds. We are going to start a Docker container with Prometheus to do
this. We will start the container with the following configuration file:

global:
 scrape_interval: 15s
 scrape_timeout: 10s
 evaluation_interval: 15s
 alerting:
 alertmanagers:
 - static_configs:
 - targets: []
 scheme: http
 timeout: 10s
 scrape_configs:
 - job_name: prometheus
 honor_timestamps: true
 scrape_interval: 15s
 scrape_timeout: 10s
 metrics_path: /metrics
 scheme: http
 static_configs:
 - targets:
 - localhost:9090
 - targets:
 - 192.168.178.82:9252

The important part right now is as follows:

- targets:
 - 192.168.178.82:9252

As you can see, this is the exact URL of our Runner's metrics data. Now, we start the
Prometheus container with the config file as an argument (it will download the container
from Docker Hub if you do not have it locally):

$ docker run -p 9090:9090 -v
/Users/joostevertse/srv/prometheus:/etc/prometheus prom/prometheus
 level=info ts=2019-05-26T20:08:31.338Z caller=main.go:286 msg="no time or
size retention was set so using the default time retention" duration=15d
 level=info ts=2019-05-26T20:08:31.339Z caller=main.go:322 msg="Starting
Prometheus" version="(version=2.10.0, branch=HEAD,
revision=d20e84d0fb64aff2f62a977adc8cfb656da4e286)"

Monitoring CI Metrics Chapter 18

[431]

We can interrupt the container with Ctrl+ C, but we started it this way as an example. If we
use the -d argument to the Docker run command, the container will run in the
background.

In this example, the Prometheus container is running on port 9090, and the port is
published via Docker -p 9090:9090.

If we visit the page (in my case, http://localhost:9090), we will be presented with a
fresh Prometheus installation:

Monitoring CI Metrics Chapter 18

[432]

To find out whether it is actually getting information from the Runner, click on -insert
metric at cursor -. We will see some Runner-related metrics, as follows:

In the next section, we'll demonstrate some metrics that have value in determining the state
of your builds.

Monitoring CI Metrics Chapter 18

[433]

Runner business logic metrics
Imagine that you have several developers working on a system and you have several
integration tests that should pass before you can deploy to a production environment. If
speed is important for your business, then you need to build your system quickly. To do
this, there have to be GitLab Runners available and ready to run jobs. If they
are unavailable or they perform badly, your development will slow down and so will your
business. What follows are some business logic metrics that are viewable in Prometheus.

Key metrics to watch
There are a lot of metrics available, but let's look at some that have proven useful in the
past:

gitlab_runner_jobs: It is wise to monitor the number of pending jobs:

If this number gets too high, consider adding a higher limit for autoscalable
Runners.

Monitoring CI Metrics Chapter 18

[434]

gitlab_autoscaling_options_total: Another interesting metric is the type
and number of scaling actions that are performed on the Runner:

The actions created and removed should be about the same (too many created is
expensive, and too many removed would signal a problem). When it is busy, you
want a growing number of used instances, as this would indicate efficient resource
use.

gitlab_runner_jobs_total: The gitlab_runner_jobs_total information
is nice to have during capacity planning:

Monitoring CI Metrics Chapter 18

[435]

If there is an ever-increasing number of jobs, scale the number of Runners up
before you run out of capacity.

Monitoring CI Metrics Chapter 18

[436]

gitlab_runner_autoscaling_machine_creation_duration_seconds_cou

nt: The Runners in this example are autoscaled on different platforms (Amazon
and VirtualBox). The main GitLab Runner instance kept track of how many
machines were created and how much time it took to spin up new machines:

This can help you to determine whether you are running on the right platform.

gitlab_runner_limit: If you are going to experiment with the limit of
Runners that can be spawned by the Docker Machine executor, this metric is
useful to record and you can use it in queries later on in order to compare data:

Monitoring CI Metrics Chapter 18

[437]

If you see the limit growing, it means your business is growing.

gitlab_runner_errors: The next graph demonstrates the rate function, which
can be used to query metrics and show how much the metric has increased or
decreased for a chosen interval. The function is part of PromQL, which is the
language for querying data in Prometheus:

Here, we check the total number of errors that are generated by different Runners.

Monitoring CI Metrics Chapter 18

[438]

gitlab_runner_failed_jobs_total: A potentially interesting metric is the
rate of the number of failed jobs. In the following graph for our Runner, we can
see that there is a sudden spike:

We should have no failed jobs at all, so this is a candidate for alerting, which we will
discuss in the Alert management section of this chapter.

General process metrics
It is helpful to have metrics about the number of jobs processed, or the speed of the jobs.
But, sometimes, we may also want to know whether the machine that is hosting the Runner
is experiencing operational issues, such as low memory or CPU contention. The
Prometheus exporter also records general process metrics such as these.

Monitoring CI Metrics Chapter 18

[439]

Key metrics to watch
The following metrics only cover the host in which the Docker Machine executor is
running:

process_cpu_seconds_total: If you have a small machine, it is useful to
know whether the CPU is coping with the load. There is a count that records the
total number of CPU seconds used by the Runner process:

 A big increase in a short period of time could indicate issues.

process_open_fds: There is a maximum number of open file descriptors on a
Unix system. If this number is reached, the system will generate errors and won't
open files anymore:

If the maximum is reached, you can expect your jobs to fail.

Monitoring CI Metrics Chapter 18

[440]

process_resident_memory_bytes: This is the amount of memory Prometheus
is using from the kernel that is real memory and not virtual or swap memory. Big
changes in this value can indicate issues:

As you can see, there are no problems on our demonstration server.

Monitoring CI Metrics Chapter 18

[441]

process_virtual_memory_bytes: This metric represents all memory
(including RAM and swap) that is managed by the Runner process:

Once again, there are no issues on our demonstration server.

Monitoring CI Metrics Chapter 18

[442]

process_start_time_seconds: If there are issues, it is nice to know the time
when the issues started and how they have developed:

Recording the start time of the process can help debug issues.

scrape_duration_seconds: The Prometheus server scrapes (downloads) the
information that is exposed by the exporter. It also records how much time the
scraping took:

Long scraping times could indicate a network problem or a slow Runner.

Monitoring CI Metrics Chapter 18

[443]

go_gc_duration_seconds_count: There are also metrics about the Golang
runtime environment that the Runner is running in; for example; the amount of
time it takes to do garbage collection:

These metrics are very detailed, and are more interesting for developers of the GitLab
Runner than for users.

All the general process metrics combined can give you an idea of how the Docker Machine
Runner is behaving, and can be used to discover trends. Of course, it is also nice to be
alerted to a value that has reached a certain threshold; that is the subject of the next section.

Alert management
Prometheus' Alertmanager (https://prometheus.io/docs/alerting/alertmanager/) is a
tool that is especially designed for bigger infrastructures. Pager and alerting programs have
been around for a long time, but this one and Prometheus itself are highly optimized for
working in a scaling infrastructure. It is also available as a Docker container: https://hub.
docker.com/r/prom/alertmanager/.

As we saw in the infrastructure diagram at the beginning of this chapter, we use a separate
Prometheus and Alertmanager containers to demonstrate our Runner metrics collection.

The Alertmanager container has a configuration file
(srv/prometheus/alertmanager.yml):

global:
 # The smarthost and SMTP sender used for mail notifications.
 smtp_smarthost: 'smtp.xs4all.nl:25'
 smtp_from: 'alertmanager@joustie.nl'

 route:
 repeat_interval: 3h

https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/
https://hub.docker.com/r/prom/alertmanager/

Monitoring CI Metrics Chapter 18

[444]

 receiver: joustie

 routes:
 - match_re:
 service: ^(.*)$
 receiver: joustie

 receivers:
 - name: 'joustie'
 email_configs:
 - to: 'joustie@somewhere.com'

The configuration has an email host defined, and it routes alerts via email to
joustie@somewhere.com every 3 hours if it is not silenced.

The Alertmanager Docker container can be started with the following command:

docker run -dp 9093:9093 --name=prom_alertmanager -v
/Users/joostevertse/srv/prometheus/alertmanager.yml:/alertmanager.yml
prom/alertmanager --config.file=/alertmanager.yml

We have already started a Prometheus container, but to make it connect to the
Alertmanager container, we need to alter its configuration in two ways. We need an alerts
file in which we determine what event should trigger an alert. In our example, we check the
number of failed Runner metrics and make it turn red when there are more than two
failed jobs. The alert.rules file for this is as follows:

groups:
 - name: joberror
 rules:
 - alert: HighErrorRate
 expr: gitlab_runner_failed_jobs_total > 2
 for: 1m
 labels:
 severity: email
 annotations:
 summary: High job errors

This configuration shows that joustie@somewhere.com will receive an email when there
are more than two failed jobs.

Monitoring CI Metrics Chapter 18

[445]

The second change is to the main Prometheus configuration file
(srv/prometheus/prometheus.yml). This new section is all about adding an alerting
configuration (an Alertmanager is added that is running on 192.168.178.82 port 9093):

alerting:
 alertmanagers:
 - static_configs:
 - targets: ["192.168.178.82:9093"]
 scheme: http
 timeout: 10s

After changing the file, we have to activate the new configuration. We have to restart the
container from scratch for this:

$ docker stop prom_server
 ff55a556772
 $ docker rm prom_server
 ff55a556772
 $ docker run -dp 9090:9090 --name=prom_server -v
/Users/joostevertse/srv/prometheus/prometheus.yml:/etc/prometheus/prometheu
s.yml -v
/Users/joostevertse/srv/prometheus/alert.rules:/etc/prometheus/alert.rules
prom/prometheus --config.file=/etc/prometheus/prometheus.yml

Notice that the container is recreated because we have to link the alert rules into the
container.

After the containers have started, and we have kicked off some jobs and made them fail,
there should be an alert triggered. You can find the alert in Prometheus in the web interface
(in our case, http://localhost:9090/alerts):

Monitoring CI Metrics Chapter 18

[446]

We can also view this file in the Alertmanager instance. In our example, we go to
http://localhost:9093/#/alerts to find the alert:

The Alertmanager was configured to send emails, so we received the following email:

Monitoring CI Metrics Chapter 18

[447]

The Alertmanager has the concept of a Silence, which means you can suppress alerts from
being sent depending on certain matches. If, for instance, we temporarily want to suppress
alerts for HighErrorRate, we can set a duration of 2 hours, during which those alerts will be
silenced:

Monitoring CI Metrics Chapter 18

[448]

With Alertmanager enabled and the alerts defined, it is much clearer how GitLab Runners
perform, and if they are generating errors. You certainly need monitoring like this to learn
from errors and create a faster and higher-quality CI/CD pipeline.

Summary
In this chapter, we continued with the Runner architecture from the previous chapter and
showed you a way to monitor the autoscaling Runner, no matter which Docker
Machine drivers are being used. The Prometheus monitoring solution offers a highly
scalable time series database, and together with the Alertmanager, you can create
sophisticated monitoring. In the example we used, Docker containers are used extensively
as Prometheus is cloud-native software (https://prometheus.io/blog/2016/05/09/
prometheus-to-join-the-cloud-native-computing-foundation/), but the software can
also be run on dedicated hardware.

In the next chapter, we will learn about the options available to create a GitLab highly
available (HA) infrastructure. In the first section of that chapter, we will discuss the basic
setup for that.

Questions
What is the collection of metrics done by the Prometheus server called?1.
What is the Prometheus client program called?2.
In which section do you define a server to be monitored?3.
What is the default Prometheus port?4.
Name the first option to try when there are a lot of pending jobs.5.
Which PromQL function is used to query the average rate of increase for a6.
dataset?

https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/
https://prometheus.io/blog/2016/05/09/prometheus-to-join-the-cloud-native-computing-foundation/

Monitoring CI Metrics Chapter 18

[449]

Further reading
Practical Site Reliability Engineering by Pethuru Raj Chelliah, Saravanan Pitchaimani,
and Babu Jayaraj: https://www.packtpub.com/virtualization-and-cloud/
practical-site-reliability-engineering.
Cloud Native Programming with Golang, by Mina Andrawos and Martin
Helmich: https://www.packtpub.com/application-development/cloud-native-
programming-golang.

https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/virtualization-and-cloud/practical-site-reliability-engineering
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang
https://www.packtpub.com/application-development/cloud-native-programming-golang

5
Section 5: Scale the Server

Infrastructure (High Availability
Setup)

After reading this section, you will be able to choose which high availability (HA) setup
fits your needs, monitor the results, and act on certain thresholds.

This section comprises the following chapters:

Chapter 19, Creating a Basic HA Architecture Using Horizontal Scaling
Chapter 20, Managing a Hybrid HA Environment
Chapter 21, Making Your Environment Fully Distributed
Chapter 22, Using Geo to Create Distributed Read-Only Copies of GitLab

19
Creating a Basic HA

Architecture Using Horizontal
Scaling

GitLab is an application that consists of many components. The GitLab omnibus package
makes it easy to run all these components on one physical server; however, there comes a
time when one server is no longer enough to run GitLab. On a typical 4-CPU core machine
with 16 GB of RAM, you can support about 2,000 users. Once you run an application on
virtual hardware, it scales better (it is cheaper to reproduce virtual hardware); however,
using more than 32 cores is still quite expensive and there comes a time when it is more
economical to split up the functionality and scale horizontally. In this chapter, we will try to
achieve this using Terraform and Ansible DevOps tools to deploy infrastructure as code.
We will be using the Amazon Web Services (AWS) cloud offering as a backend.

You can build entire virtual infrastructures with Terraform and configure them using
Ansible. These infrastructures can leverage the scaling features that cloud providers such as
Amazon provide.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[452]

In this chapter, we will cover the following topics:

The underlying architecture of the high available and scalable GitLab setup
Setting up the bastion hosts
Configuring the database nodes
The Redis configuration
Connecting the shared filesystem
Setting up the application servers

Technical requirements
For managing omnibus installations, there is one central configuration file called
gitlab.rb. You need to create it or copy an example. There is a template available
from https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-
config-template/gitlab.rb.template. Upgrades don't replace or edit this file. In large
parts of this chapter, I quote and discuss parts of this file.

For creating our virtual infrastructure, we are going to use Terraform (≥ v0.11.12). You can
download it from https://www.terraform.io. Terraform is a multiplatform binary.

Terraform providers use the following:

provider.ansible v0.0.4: Get it from https://github.com/nbering/
terraform-inventory.
provider.aws v2.1.0: Automatically downloaded with the terraform init
command (see later on in Starting with the code section).
provider.tls v1.2.0: Automatically downloaded with the terraform init
command (see later on in Starting with the code section).

For automating our deployments, we use Ansible (≥ version 2.7). You can download it from
https://github.com/ansible/ansible, or use a package manager such as brew or pip to
install it.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[453]

To follow along with the instructions in this chapter, please download the Git repository,
which contains examples and is on GitHub: https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter19https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter19.

The underlying architecture of this solution
What is the first iteration of a horizontally scaled GitLab? We not only need to scale
horizontally to enable efficient growth, but also to enhance availability of the solution.
Availability is usually measured in uptime, that is the percentage of the day, month, or year
that your system is operational. To get this to a higher level, you need to eliminate single
points of failure and make the components redundant. Also, be sure that the components
can take over from each other when needed and have a good system in place that monitors
and detects failures. If your system is doing this, it is said to be a high availability (HA)
system.

What does it mean to scale horizontally? It means that you will split workloads into
different layers. A load balancer will be placed at the front of the infrastructure. This will
get one IP address and this will be the new external URL from GitLab. The traffic that
enters here is distributed on the basis of the round-robin principle. One traffic flow goes to
one GitLab application server, and the other goes to a second one. Because the load
balancer supports sticky cookies, each web session will always choose the same route and
end up at the same application server.

Because you now have two application servers, you need to share certain things to make it
all work. For instance, if one of the GitLab application servers goes down, you want the
other to take over the current HTTP sessions; therefore, you need a Redis server that is
reachable by both application servers. The Redis server is where certain session information
is kept.

Another example is the repository data. We can't keep this confined on one GitLab server
anymore, it needs to be shared! There are several options for this, but we will start with the
simplest one: a Network File System (NFS).

The database can serve many clients, but it will also run several standby servers as a
failover precaution. We also need a cluster mechanism to determine which database is the
master and who is online.

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter19
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[454]

The following is a diagram of the AWS GitLab horizontal scaling example solution, which
is the basic HA solution:

On the left-hand side, you can find the clients. On the right-hand side, you can see the
Amazon infrastructure. Everything is contained in a Virtual Private Cloud (VPC). Inside
this VPC, you can see several security groups, which are mapped onto subnets.

The clients enter the infrastructure through the SG-loadbalancer security group. The
requests for GitLab are then routed to the frontend application servers. They are connected
to a shared filesystem and are connected to a Redis cluster that is also in the SG-
frontendservers security group. The frontend application servers also connect to a database
in the SG-backendservers zone through a pgbouncer proxy. There are three database
servers: one master and two slaves. The health of the database servers is monitored through
a consul cluster.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[455]

The bastion servers that are in the SG-bastion hosts security group have two special
functions:

They are accessible with SSH from the outside as jump hosts to other instances.
They have a squid proxy server installed for the installation of packages by nodes
in the SG-frontendservers and SG-backendservers zones.

We will use a cloud provider (Amazon) in our examples to build a basic scalable platform.
With a little refactoring, the Terraform configuration could be rewritten to the specification
of another cloud provider.

First, we will discuss the basic building blocks of this architecture.

Amazon services
AWS was the first big cloud offering. It started out by selling overcapacity from the
Amazon server farms. In the last 10 years, it has grown rapidly and diversified its services.
You can use it to virtualize your entire IT stack or create new services from the ground up.
For this example, we use AWS because it performs very well and a lot of people are familiar
with the concepts.

AWS has different kinds of building blocks that you can use to create your infrastructure.
The basic ones are as follows.

Elastic compute cloud (EC2)
Amazon EC2 is a popular product in AWS. It was one of the first cloud-scale virtual
machine offerings on the market. You can rent virtual computers that can provide compute
resources. You can run several kinds of operating systems in that virtual machine, and
there are several ways to interact with this service. It is manageable through the AWS web
console, and you can also use the extensive APIs to create and control EC2 instances. You
can load custom applications into the virtual machines and use other Amazon services from
them. It is effortless to scale up the number of machines, and security functions are
available out of the box, as well as basic monitoring capabilities.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[456]

Classic load balancer
This is a public internet-facing interface with a Fully Qualified Domain Name (FQDN),
and it routes requests from internet hosts to EC2 instances that have been registered with it.
It has some built-in monitoring capabilities and a health check mechanism. For instance, it
checks the HTTP port of the EC2 instances that are registered by default; however, in our
case, that leads to trouble because the main GitLab page on the first boot always redirects.
When this happens, the health check reports out of service and closes the port. We can
change this to let the load balancer do a basic Transmission Control Protocol (TCP) health
check only.

Virtual private cloud and subnets
Amazon Virtual Private Cloud (Amazon VPC) is the highest abstraction of a group of
resources within AWS. In a VPC, you can provision several AWS resources such as virtual
networks and hosts. You are entirely in control of this space and can also create network
route tables and gateways. There can be subnets that are accessible to the internet and ones
that only communicate internally, inside your VPC. Network Access Control Lists (ACLs)
and Security Groups (SGs) help defend your VPC from intruders. You have the option to
use IPv4 and IPv6 as network protocol to enable communication over your networks.

SGs
SGs are a very important part of the security that you can use to control inbound and
outbound network traffic. In traditional networks, you would usually place firewall
appliances between networks or subnets to control network flows. In AWS, an SG takes on
this role. Besides not being a physical device, the other difference is that SGs are not
specified on the subnet level. In a VPC, you assign EC2 instances to these security groups,
so the security rules are on an instance level. There can be a maximum of five security
groups assigned. If you don't assign anything, an instance will get the default security
group for the VPC.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[457]

Terraform
A useful tool for handling multicloud configurations is Terraform by HashiCorp – the folks
that also gave us Vagrant and many other tools. It is a tool that can interact with a lot of
APIs that are exposed by cloud providers. You tell Terraform what you want your
infrastructure to look like in declarative files, and it takes care of the rest. Before it makes
changes to existing infrastructure, it builds a graph of the resources that have already been
deployed. It even has a dry run mode (terraform plan) where it calculates and reports
the actions it will execute.

Tools such as Terraform enable the Infrastructure as code paradigm. It creates a reproducible
infrastructure, and this greatly enhances the DevOps life cycle.

It is not only multi-cloud but also multiplatform, which means it can run on different
operating systems, as we will see in the next section.

Installing Terraform
You can find a version of Terraform for your platform to download here: https://www.
terraform.io/downloads.html. There are versions compiled for the following platforms:

macOS
FreeBSD
Linux
OpenBSD
Solaris
Windows

Inside the ZIP package is a single binary written in Golang that runs on your machine.
After downloading and unpacking, you should put it somewhere in your path, for
example, /usr/local/bin/ on Linux. After that, check your version on the command line
as follows:

 $terraform -v
 Terraform v0.11.12
 Make sure you have a version of at least v0.11.12. The binary is all you
need. We also want the Ansible plugin for Terraform, but let's first
install Ansible before this.

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[458]

Ansible
Ansible is an agentless automation platform whose name is based on the hyperspace
communication system, which features in science fiction literature. It is easy to set up, but
powerful. It can play a role in configuration management, application deployment, and
task automation. It is also suited for IT orchestration as a whole, where you have integrated
security with the Ansible Tower backend and run tasks in sequence and create a chain of
events that run on multiple different servers or devices. In our basic infrastructure example,
for instance, it can run tasks for all web servers in the web group.

We are going to use Ansible to configure all the systems after they are provisioned with
Terraform in the AWS infrastructure.

We mentioned that Ansible is agentless at the beginning of this section. Unlike Puppet or
Chef, it doesn't run as an agent on the remote target. Ansible uses SSH instead, so that is a
requirement for all the systems you want to manage. Another dependency is Python, which
needs to be installed on the remote target because Ansible itself is written in that language.
To run Ansible, you do not need a dedicated server machine; instead, you can initiate the
tasks from your local workstation or any other system with the basic Python runtime and
SSH clients. If you need more integrated security, you can use Ansible Tower, in order to
have a central place that connects with your enterprise identity management. It is
technically possible to use Puppet in standalone mode, but you still need to install it on the
targets.

Ansible is a free and open source product that runs on Linux, macOS, BSD, and even
Windows. RedHat bought the company behind it in 2015, and, since then, Ansible has
gotten more integrated with the RedHat enterprise product.

The real power of Ansible lies in its playbooks. A playbook is like a recipe or an instructions
manual that tells Ansible what to do when it connects to each machine. It knows which
machines to configure by checking an inventory, and which can be read from a file or
passed in through a command (this is then called a dynamic inventory).

Installing the Ansible Terraform provider
When Terraform generates the infrastructure, it keeps a local cache of the objects it has
built. All information needed to generate a dynamic inventory is available from this file,
but we need a plugin or provider to parse and transform the data so Ansible can
understand it. We use the following Ansible provider to do that: https://github.com/
nbering/terraform-inventory.

https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[459]

It's easy to install. You need to download the terraform.py file, place it in your patch,
and mark it as executable, as shown in the following example:

$cd /usr/local/bin && sudo wget
https://raw.githubusercontent.com/nbering/terraform-inventory/master/terraf
orm.py && sudo chmod 755 terraform.py

Starting with the code
When you have cloned the code from https://github.com/PacktPublishing/Mastering-
GitLab-12.git, change the current directory to the project:

cd Mastering-GitLab-12/CHP18/ha-configuration

We are going to use Terraform to create our infrastructure objects in AWS. The basic usage
of Terraform is that you define the objects in files ending in .tf, and you can then start
deploying them. If you have cloned the repository, the .tf files are already there, so you
can then initialize Terraform (to retrieve the necessary plugins):

$ terraform init
Initializing provider plugins...
- Checking for available provider plugins on
https://releases.hashicorp.com...
- Downloading plugin for provider "tls" (2.0.1)...
- Downloading plugin for provider "aws" (2.9.0)...
...
* provider.ansible: version = "~> 0.0"
* provider.aws: version = "~> 2.9"
* provider.tls: version = "~> 2.0"
Terraform has been successfully initialized!

Now that Terraform is ready to go, you need to make sure the .tf definitions are valid.
You can do that with a dry run where nothing will be installed, using the plan argument:

$ terraform plan
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:
...

https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git
https://github.com/PacktPublishing/Mastering-GitLab-12.git

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[460]

If there are no errors, you can then let Terraform create the objects for real by using the
script in scripts/deploy-with-ansible.sh. To let Terraform deploy the objects
manually, you can run apply, as follows:

$ terraform apply --auto-approve
tls_private_key.mykey: Creating...
 algorithm: "" => "RSA"
 ecdsa_curve: "" => "P224"
 private_key_pem: "" => "<computed>"
 public_key_fingerprint_md5: "" => "<computed>"
 public_key_openssh: "" => "<computed>"
 public_key_pem: "" => "<computed>"
 rsa_bits: "" => "4096"
aws_vpc.gitlabha: Creating...

In the next sections, we describe each .tf file and give an example of its use.

vpc.tf
In the Virtual private cloud and subnets section, we explained that a VPC is the beginning of
an AWS infrastructure. In the vpc.tf file, we define this:

resource "aws_vpc" "gitlabha" {
 cidr_block = "10.0.0.0/16"
 enable_dns_hostnames = true
 enable_dns_support = true
 tags{
 Name = "VPC-${var.environment}"
 }
 }

We assign the VPC a private network address that, again, can be divided into subnets:

cidr_block = "10.0.0.0/16"

We want to enable DNS hostnames for this VPC:

enable_dns_hostnames = true
enable_dns_support = true

We can use tags to give the VPC a name that fits with the environment we define:

tags{
 Name = "VPC-${var.environment}"
}

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[461]

Now that we have a basic VPC, we can divide it into further networks and create more
objects.

subnet.tf
In this file, the subnets that we can use to create networks are defined. We like to split
frontend and backend networks, and then apply rules from SGs to them in order to allow
or disallow traffic. The following example is of an entry in that file:

resource "aws_subnet" "public-frontend_az-a" {
 availability_zone = "eu-central-1a"
 cidr_block = "10.0.11.0/24"
 map_public_ip_on_launch = true
 vpc_id = "${aws_vpc.gitlabha.id}"
 tags {
 Name = "Subnet-eu-central-1a-Frontend"
 }
}

We can see that the availability zone is defined (which can be found at https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.
html#concepts-available-regions):

 availability_zone = "eu-central-1a"

The specific IP range for this subnet is defined as follows:

 cidr_block = "10.0.11.0/24"

It's also possible to let Amazon create a public IP that maps onto the hosts created in this
subnet. It does not mean it is reachable; that is determined by our security rules:

map_public_ip_on_launch = true

The next setting is the VPC that this subnet belongs to:

vpc_id = "${aws_vpc.gitlabha.id}"

The last setting is the tag that is given to this object, which makes it easier to search:

 tags {
 Name = "Subnet-eu-central-1a-Frontend"
 }

When all the subnets have been created, the frontend and backend components can
communicate with each other.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[462]

instance.tf
In this file, we declare the Amazon EC2 instances. We have several instances, but we will
start with the first frontend application server defined in this file:

resource "aws_instance" "FRONTEND_A" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 subnet_id = "${aws_subnet.public-frontend_az-a.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 instance_type = "t2.medium"
 tags {
 Name = "${var.environment}-FRONTEND001"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
}

The declaration that this block starts with constitutes an Amazon resource of
aws_instance type and is called FRONTEND_A:

resource "aws_instance" "FRONTEND_A" {

Next, the first line of the block defines the Amazon Machine Image (AMI) that is used as
the base for this instance. In our case, we run an Ubuntu image in our region. It is defined
as a variable in variable.tf:

 ami = "${lookup(var.aws_ubuntu_awis,var.region)}"

This machine will be part of a network. The following line describes which subnet the
machine is connected to:

subnet_id = "${aws_subnet.public-frontend_az-a.id}"

We need a way to connect to the machine to configure them. For this, we need an SSH
connection that, in turn, needs an SSH key pair from which the public key is registered:

key_name = "${aws_key_pair.keypair.key_name}"

We need to assign a security group to the machine, in order to make sure the network
ACLs are applied:

 vpc_security_group_ids = ["${aws_security_group.SG-frontendservers.id}"]

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[463]

Next is the type of instance: t2.medium. A list of these can be found at https://aws.
amazon.com/ec2/instance-types/:

 instance_type = "t2.medium"

The next section of this block sets tags that will be associated with this machine:

 Name = "${var.environment}-FRONTEND001"
 Environment = "${var.environment}"
 sshUser = "ubuntu"

You can see here that the name is based on the environment variables and a string.

This information is all that is needed to create a virtual machine in the Amazon EC2 cloud.
We also need a way to control it afterward with Ansible, which is done in the next section.

ansible_host.tf
We are going to use the Terraform Ansible provider to translate a Terraform state file into a
dynamic Ansible inventory. We are going to create resources of the
ansible_host type, which are taken care of by the Ansible provider. As an example, the
host that defines our frontend application server is as follows:

resource "ansible_host" "FRONTEND001" {
 inventory_hostname = "${aws_instance.FRONTEND_A.private_dns}"
 groups = ["frontend"]
 vars
 {
 ansible_user = "ubuntu"
 role = "master"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_A.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_A.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-a.cidr_block}"
 }
}

Let's connect an EC2 instance to this resource, which will then feature as a host in the
Ansible inventory:

inventory_hostname = "${aws_instance.FRONTEND_A.private_dns}"

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[464]

We also define an Ansible host group, which, in this case, is frontend:

groups = ["frontend"]

The last part of this Ansible resource is dealing with vars, which will become Ansible facts.
The SSH user that is used for executing playbooks will be "ubuntu", and a sudo
mechanism will be used afterward:

ansible_user = "ubuntu"

During the deployment of software on the hosts, we need to know which role the hosts will
play in the HA infrastructure:

role = "master"

For the SSH connection to succeed with certificate-based authentication, we need the
created private key:

ansible_ssh_private_key_file="/tmp/mykey.pem"

Ansible uses Python as its interpreter, so we must specify the version:

 ansible_python_interpreter="/usr/bin/python3"

We are not going to connect directly to the different EC2 hosts; we have to go through our
bastion hosts. We need to instruct Ansible to connect through them:

 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_A.public_dns}\""

To install the software and updates, we need a proxy server, because, by default, the
machines in the backend cannot connect to the internet:

 proxy = "${aws_instance.BASTIONHOST_A.private_ip}"

Because we are going to configure some software on the machines, we need the subnets of
the instances. They are already defined in Terraform, so we can just pass them through as
Ansible facts, in order to use them in our templates and playbooks. What follows is the
defined subnet in which the frontend application server resides:

 subnet = "${aws_subnet.public-frontend_az-a.cidr_block}"

Here, all the different nodes that are created in instance.tf are coupled to an Ansible
host, which will be exposed via the dynamic inventory script when called.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[465]

route_table.tf
Now that we have hosts and networks, we have to find a way to make them communicate
with each other. When they live in the same subnet, that is fine, but we need to route some
traffic because we have multiple networks. Here is an example of such an AWS resource,
which is called a aws_route_table resource:

resource "aws_route_table" "default" {
 vpc_id = "${aws_vpc.gitlabha.id}"

 route {
 cidr_block = "0.0.0.0/0"
 gateway_id = "${aws_internet_gateway.internet_gateway.id}"
 }

 tags {
 Name = "Default route table"
 }
}

The first property is the VPC it belongs to:

vpc_id = "${aws_vpc.gitlabha.id}"

Then, a route is defined. In this example, it is the default route, 0.0.0.0/0:

 cidr_block = "0.0.0.0/0"

The gateway in this block is the internet gateway for this VPC:

gateway_id = "${aws_internet_gateway.internet_gateway.id}"

There are several other routes defined for enabling traffic between the subnets that were
created.

security_group.tf
In this file, we define the security groups that are in use for this VPC. A security group
consists of ingress (incoming) and eggress (outgoing) traffic definitions:

resource "aws_security_group" "SG-frontendservers"
{
 name = "SG-frontendservers"
 vpc_id = "${aws_vpc.gitlabha.id}"
 description = "Security group for frontendservers"
 ingress {

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[466]

 from_port = 22
 to_port = 22
 protocol = "TCP"
 security_groups = ["${aws_security_group.SG-bastionhosts.id}"]
 description = "Allow incoming SSH traffic from bastion hosts"
}

The first two attributes define the name for the group, as well as the ID of the VPC to which
this group belongs:

 name = "SG-frontendservers"
 vpc_id = "${aws_vpc.gitlabha.id}"
 description = "Security group for frontendservers"

The last attribute is a description of this group. Then, the first ingress traffic definition
follows:

 from_port = 22
 to_port = 22
 protocol = "TCP"

It states the source, the destination port, and the protocol (in this case, it is TCP).

The last parts of the ingress definition mention the security group IDs and the description
of this ingress rule:

security_groups = ["${aws_security_group.SG-bastionhosts.id}"]
description = "Allow incoming SSH traffic from bastion hosts"

Several other rules are defined as well, but they follow the same specification.

variable.tf
We have used a special file to declare some high-level variables – in this case, the region
where the infrastructure will be run:

 variable "region"
 {
 default = "eu-central-1"
 }

If the variables are not declared, the scripts will either fail or ask for an input.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[467]

keypair.tf
During the Terraform deployment, a custom SSH key pair will be created; in this file, we
define some properties for it:

resource "tls_private_key" "mykey"
{
 algorithm = "RSA"
 rsa_bits = 4096
}

resource "aws_key_pair" "keypair"
{
 key_name = "${var.key_name}"
 public_key = "${tls_private_key.mykey.public_key_openssh}"
}

output "mykey" {
 value = "${tls_private_key.mykey.private_key_pem}}"
 sensitive = true
}

The resource type we first define is an SSH private key:

 resource "tls_private_key" "privkey"
 {
 algorithm = "RSA"
 rsa_bits = 4096
 }

We determine what kind of algorithm will be used and the key size in bits.

The next resource is the key pair as a bundle:

 resource "aws_key_pair" "keypair"
 {
 key_name = "${var.key_name}"
 public_key = "${tls_private_key.privkey.public_key_openssh}"
 }

Here, we define the name of the key and the public key accompanying it.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[468]

The last part of the file is to make sure we can dump the contents of the private key to a file,
so we can use it to connect from our Ansible host:

output "mykey" {
 value = "${tls_private_key.mykey.private_key_pem}}"
 sensitive = true
}

After being generated, the key can be extracted with the terraform output command.

lb.tf
This file holds the declaration of the load balancer we use in front of the GitLab application
hosts, in order to distribute network traffic:

resource "aws_elb" "lb" {
 name_prefix = "${var.environment}-"
 subnets = ["${aws_subnet.public-frontend_az-a.id}",
"${aws_subnet.public-frontend_az-b.id}"]
 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:80"
 interval = 30
 }
 listener {
 instance_port = 80
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"
 }
 cross_zone_load_balancing = true
 instances = ["${aws_instance.FRONTEND_A.id}",
"${aws_instance.FRONTEND_B.id}"]
 security_groups = ["${aws_security_group.SG-loadbalancer.id}"]
}

 resource "aws_lb_cookie_stickiness_policy" "gitlab" {
 name = "gitlab-policy"
 load_balancer = "${aws_elb.lb.id}"
 lb_port = 80
 cookie_expiration_period = 600
}

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[469]

The first part of the resource block contains a name prefix (such as dev-) and the subnets
that this load balancer is connected to:

name_prefix = "${var.environment}-"
subnets = ["${aws_subnet.public-frontend_az-a.id}", "${aws_subnet.public-
frontend_az-b.id}"]

Then, there is a definition of the health check the load balancer performs, in order to
determine whether an upstream destination is still running:

 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:80"
 interval = 30
 }

As mentioned before, we are changing this from the default HTTP check to a TCP check
because of the redirect mechanism of GitLab's default page. After two consecutive failures
to check whether TCP port 80 is open, the load balancer will set an upstream target to
OutOfService and stop using it. With an interval of 30 seconds and a timeout of 3, the
upstream target will take about 2 minutes to go in to service or out of service.

You also have to define a listener block, where you register which ports the load
balancer should open at the front, and to which ports on the backend instances it should
connect:

 listener {
 instance_port = 80
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"
 }

Finally, the last part of the lb block is used to check whether it is possible to load balance
across zones, and whether there are instances defined that will be used by the load
balancer:

cross_zone_load_balancing = true
instances = ["${aws_instance.FRONTEND_A.id}",
"${aws_instance.FRONTEND_B.id}"]
security_groups = ["${aws_security_group.SG-loadbalancer.id}"]

The preceding final attribute is the specific security group this load balancer is part of.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[470]

providers.tf
We keep a providers.tf file to define some basic variables for the AWS provider. We
already defined region as a variable, so we are going to reuse it (${var/region}):

 provider "aws" {
 region = "${var.region}"
 }

To summarize, we have a number of .tf files in the directory here that all describe
Amazon resources. They are named after the functions that can be recognized in them.
Here is the list of files containing Terraform definitions:

ansible.tf: Where we define our Ansible hosts to be
instances.tf: Which defines the EC2 instances (in our case, 14)
keys.tf: Where we define generated SSH key properties
lb.tf: Where we define our classic load balancer (such as stickiness and health
checks)
networking.tf: Where we define the VPC and subnets
providers.tf: Where we put provider-specific information
routes.tf: Where we put our routing between subnets
security.tf: Where we define the security groups
variables.tf: Where we define global variables

Now that we have our infrastructure definitions, it's time to test our declarations, and, after
that, deploy the code.

Preparing to run Terraform to deploy the virtual
hardware
Before Terraform executes the API calls to AWS that create or delete resources, it first
parses your .tf files and generates a graph of the resources it is going to change. It then
checks what is already in Amazon and compares the two. It will then ask for confirmation.
It is always a good plan to do a dry run first, which can be done with the plan feature:

 $ terraform plan
 Refreshing Terraform state in-memory prior to plan...
 The refreshed state will be used to calculate this plan, but will not be
 persisted to local or remote state storage.
 tls_private_key.privkey:

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[471]

 Refreshing state... (ID: 874768c0573f85ee35688f91b96793940376786c)
 ...

After building graphs and doing a comparison, Terraform will report how much it will
change when executed for real:

 Plan: 51 to add, 0 to change, 0 to destroy.

As you can see, we don't have anything in there yet, and we will proceed in running the
provisioning.

Running the deployment
You can run the deployment with the following command:

 terraform apply

You can also add the --auto-approve argument; then, it will not ask for confirmation.

Running the apply command will start and produce a lot of output, as follows:

 tls_private_key.privkey: Refreshing state... (ID:
874768c0573f85ee35688f91b96793940376786c)
 aws_key_pair.keypair: Refreshing state... (ID: ec2key)
 aws_vpc.gitlabha: Refreshing state... (ID: vpc-0d623120e0d5401f9)
 aws_subnet.pub-web-az-b: Refreshing state... (ID:
subnet-03908026eb72659e1)
 aws_subnet.priv-db-az-a: Refreshing state... (ID:
subnet-0e65b8cb35e8ef116)

In the end, if all goes well, you should receive a message to say that the application is
complete:

Apply complete! Resources: 51 added, 0 changed, 0 destroyed.
Outputs:
private_key = <sensitive>

It also tells you whether it has outputs, which means there is a variable saved in the
Terraform state. This is actually the private key we defined in the keys.tf file. After
deployment, we should now save this in a file somewhere so we can configure Ansible, in
order to use it to set up SSH connections to AWS hosts.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[472]

You can do this as follows:

terraform output -json|jq .private_key.value -r >/tmp/privkey.pem && chmod
600 /tmp/privkey.pem

If you log in to the AWS web console, you can view your created resources. Here is a list of
created EC2 instances:

Before we start using Ansible to deploy to the machines, let's walk through the files that
Ansible uses. We keep our playbooks in the main Git project directory: https://github.
com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration:

 ├── files
 │ └── .ansible.cfg
 ├── install-consul.yml
 ├── install-gitlab.yml
 ├── install-nfs.yml
 ├── install-pgbouncer.yml
 ├── install-postgres-core.yml
 ├── install-postgres-slaves.yml
 ├── install-redis.yml
 ├── install-bastion-hosts.yml
 └── templates
 ├── databases.ini.j2
 ├── gitlab.rb.consul.j2

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter18/ha-configuration

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[473]

 ├── gitlab.rb.j2
 ├── gitlab.rb.pgbouncer.j2
 ├── gitlab.rb.postgres.j2
 ├── gitlab.rb.redis.j2
 ├── nfs_exports.j2
 └── pgpass.j2

First, you see playbooks with the .yml extension. Then, there is a files directory, which is
intended to accommodate files that must be copied without modification. We also have a
templates directory, which holds Jinja2 (Python templating engine) templates that are
copied and modified in some playbooks.

An important thing to remember is that this example uses fairly simple playbooks. Every
playbook does what the name implies, and we don't use Ansible roles or error handling.
This makes the code easier to understand, but it also makes it a bit less robust.

Before you run the ansible-playbook commands, have a look at the playbooks in order
to understand what they do. Further on, we will discuss the Jinja2 templates that are used.
Most of the nodes are configured with the GitLab omnibus installer, which relies heavily on
a gitlab.rb file as a parameter file, and runs all kinds of configuration actions based on
the file.

Setting up the bastion hosts
The bastion hosts are the first two machines in the VPC and are used as jumphosts to
connect to other instances in your VPN. That is why they are installed first. They will be
provided with a squid cache and function as a proxy for the other hosts to install packages
and such:

Script: install.yml
Jinja template: None
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install.yml

After installation, you can connect using the following script:

connect_ssh.sh bastion0

Or, if you want to connect to the second bastion host, use the following script:

connect_ssh.sh bastion1

The hosts will be used by the Ansible scripts as jumphosts for deployments.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[474]

Configuring the database nodes
The installation of the database nodes is done through two Ansible scripts. The master
database is installed through install-postgres-core.yml and the slave databases
through install-postgres-slave.yml. They both share the same Jinja template
(gitlab.rb.postgres.j2); however, inside the template, there are some conditionals
where values are replaced based on whether a host is a database master or slave:

Script: install-postgres-core.yml and install-postgres-slaves.yml
Jinja template: gitlab.rb.postgres.j2
Run the following commands:

For master databases: ansible-playbook -i
/usr/local/bin/terraform.py deploy/install-postgres-
core.yml

For slave databases: ansible-playbook -i
/usr/local/bin/terraform.py deploy/install-postgres-
slaves.yml

Contents of the gitlab.rb.postgres.j2 template
The first declaration in the gitlab.rb.postgres.j2 template is which role the instance
will play in our infrastructure:

 # Disable all components except PostgreSQL
 roles ['postgres_role']

The next setting is to determine whether a database should be initialized as a master
database, which should only be performed on the master node:

Only the master database should become master
 {% if hostvars[inventory_hostname].role == "slave" %}
 repmgr['master_on_initialization'] = false
 {% endif %}

The general database properties are the same for the master and the slaves. The database
should listen on all interfaces and be prepared to sync their data:

 # Database properties
 postgresql['listen_address'] = '0.0.0.0'
 postgresql['hot_standby'] = 'on'
 postgresql['wal_level'] = 'replica'
 postgresql['shared_preload_libraries'] = 'repmgr_funcs'

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[475]

We are going to use PgBouncer to create sessions to the database. For this, it needs an
account password, which is configured here:

Replace pgbouncer_user_password with a generated md5 value :packtpub
gitlab-ctl pg-password-md5 pgbouncer packtpub
postgresql['pgbouncer_user_password'] = '5da810d253b27c0a30ce8a19c4361659'

The default postgres password is configured next. We need to get the hash value of the
password. You can generate it by running gitlab-ctl pg-password in a Docker
container:

$ docker run -ti gitlab/gitlab-ee:latest --name gitlab-ee
$ docker exec -ti gitlab-ee gitlab-ctl pg-password-md5 gitlab
Enter password:
Confirm password:
319e2283a175820cc15a0c7ed742f336

In the template, replace POSTGRESQL_PASSWORD_HASH with the generated md5 value (for
example, you entered packtpub):

postgresql['sql_user_password'] = '319e2283a175820cc15a0c7ed742f336'

None of the database installations should run Rails migrations, which means no data is
loaded into the database. That job is left to the backend application servers:

Disable automatic database migrations
gitlab_rails['auto_migrate'] = false

The database saves changes to the logs before writing them into the database files. This is
called Write-Ahead Logging (WAL). An important part of the database's HA mechanism is
that the master database sends these database logs to the slaves and lets them replay these
logs against their databases. This setting determines how many WAL sender processes are
allowed (to make sure there are not too many connections, which would slow things
down):

#Set the number of wal senders to how many postgresql servers +1
postgresql['max_wal_senders'] = 4

By default, connections to the database are not allowed. We specify a whitelist of allowed
networks and hosts for different services. The variables that begin with hostvars are
Ansible-specific and refer to the dynamic inventory that is created by terraform-
ansible.py.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[476]

The master and slave databases are allowed to connect for replication purposes without a
password:

postgresql['trust_auth_cidr_addresses'] = %w({{
hostvars[groups['db'][0]]['subnet'] }} {{
hostvars[groups['db'][1]]['subnet'] }} {{
hostvars[groups['db'][2]]['subnet'] }})

The application servers are allowed to connect with a password:

postgresql['md5_auth_cidr_addresses'] = %w({{
hostvars[groups['web'][0]]['inventory_hostname'] }} {{
hostvars[groups['web'][1]]['inventory_hostname'] }})

The repmgr service is also allowed to connect without a password, in order to manage
replication:

repmgr['trust_auth_cidr_addresses'] = %w({{
hostvars[groups['db'][0]]['subnet'] }} {{
hostvars[groups['db'][1]]['subnet'] }} {{
hostvars[groups['db'][2]]['subnet'] }})

The databases should all have the consul agent installed, which is used to signal whether
the database is available:

 # Configure the consul agent
 consul['services'] = %w(postgresql)

The consul agent has to know where to connect to, in order to report about cluster health,
which is done where the consul nodes are inserted:

 Consul nodes
 consul['configuration'] = {
 retry_join: %w({{ hostvars[groups['consul'][0]]['inventory_hostname'] }}
{{ hostvars[groups['consul'][1]]['inventory_hostname'] }} {{
hostvars[groups['consul'][2]]['inventory_hostname'] }})
 }

When the Ansible jobs for the database master and slaves have run, you should have an
operations PostgreSQL database cluster with failover capabilities.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[477]

Configuring the consul nodes
The deployment of consul is necessary to keep track of the database service. When consul
detects that one of the agents in the database is reporting a failure or not answering, it will
let PGBouncer know and make sure the application servers will use the working database.
If the master database is offline, it failover to a standby node:

Script: install-consul.yml
Jinja template: gitlab.rb.consul.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-consul.yml

Contents of gitlab.rb.consul.j2
The first declaration in this file is which role the instance will play in our infrastructure:

Disable all components except Consul
 roles ['consul_role']

The second set of declarations disables all other functions for this host. GitLab omnibus will
only configure services for running consul:

Disable all other services
 sidekiq['enable'] = false
 gitlab_workhorse['enable'] = false
 unicorn['enable'] = false
 postgresql['enable'] = false
 nginx['enable'] = false
 prometheus['enable'] = false
 alertmanager['enable'] = false
 pgbouncer_exporter['enable'] = false
 gitlab_monitor['enable'] = false
 gitaly['enable'] = false

In the next section, the nodes that will be part of the consul cluster are defined:

 # Consul nodes
 consul['configuration'] = {
 server: true,
 retry_join: %w({{ hostvars[groups['consul'][0]]['inventory_hostname'] }}
{{ hostvars[groups['consul'][1]]['inventory_hostname'] }} {{
hostvars[groups['consul'][2]]['inventory_hostname'] }})
 }

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[478]

As with disabling the other functions, we must also prohibit omnibus from trying to run
Rails database migration actions:

Disable db auto migrations
 gitlab_rails['auto_migrate'] = false

After running the deployment script, you will have a running consul cluster that can
communicate between nodes. The consul agents are installed via other roles in
gitlab.rb.

Configuring the PgBouncer node
The PgBouncer component is used to multiplex database connections and switch between
active and passive database nodes:

Script: install-pgbouncer.yml
Jinja template: gitlab.rb.pgbouncer.j2, databases.ini.j2, pgpass.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-pgbouncer.yml

Contents of gitlab.rb.pgbouncer.j2
The first declaration in this file is which role the instance will play in our infrastructure:

Disable all components except Pgbouncer and Consul agent
roles ['pgbouncer_role']

Again, we want omnibus to disable all other functions for this host:

Disable all other services
sidekiq['enable'] = false
gitlab_workhorse['enable'] = false
unicorn['enable'] = false
postgresql['enable'] = false
nginx['enable'] = false
prometheus['enable'] = false
alertmanager['enable'] = false
gitlab_monitor['enable'] = false
gitaly['enable'] = false

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[479]

We must set the usernames that will be used through PgBouncer:

Configure Pgbouncer
pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul)

The consul agent that runs on this machine must keep an eye on the PostgreSQL service:

Configure Consul agent
consul['watchers'] = %w(postgresql)

We need to set the application password for the gitlab-consul and PgBouncer users:

 # Setup application passwords
 pgbouncer['users'] = {
 'gitlab-consul': {
 password: '46ae9788c600a7d8483796466f64033a'
 },
 'pgbouncer': {
 password: '5da810d253b27c0a30ce8a19c4361659'
 }
 }

The consul agent has to know which consul nodes are around:

Consul nodes
 consul['configuration'] = {
 retry_join: %w({{ hostvars[groups['consul'][0]]['inventory_hostname'] }}
{{ hostvars[groups['consul'][1]]['inventory_hostname'] }} {{
hostvars[groups['consul'][2]]['inventory_hostname'] }})
 }

There are two more Jinja templates that are used in this Ansible script:

databases.ini.j2: In this file, the connection string for the initial database
connection is set:

[databases]
gitlabhq_production = host={{
hostvars[groups['db'][2]]['inventory_hostname'] }}
auth_user=pgbouncer

pgpass.j2: This contains the plaintext password for PgBouncer:

127.0.0.1:*:pgbouncer:pgbouncer:packtpub

On completion of running the install-pgbouncer.yml script, there should be a single
PgBouncer node connected to the databases and consul.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[480]

The Redis configuration
One of the most important components of GitLab Redis is installed as a master/slave cluster
in this setup:

Script: install-redis.yml
Jinja template: gitlab.rb.redis.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-redis.yml

Contents of gitlab.rb.redis.j2
The first declaration in this file is which role the instance will play in our infrastructure:

Enable Redis
redis['enable'] = true

Again, all other functions are disabled:

 # Disable all other services
 sidekiq['enable'] = false
 gitlab_workhorse['enable'] = false
 unicorn['enable'] = false
 postgresql['enable'] = false
 nginx['enable'] = false
 prometheus['enable'] = false
 alertmanager['enable'] = false
 pgbouncer_exporter['enable'] = false
 gitlab_monitor['enable'] = false
 gitaly['enable'] = false

In this part, we also check the role of the Redis node, which is passed through by Terraform
to Ansible via the dynamic inventory:

 # Check the role of the redis server
 {% if hostvars[inventory_hostname].role == "master" %}
 roles ['redis_master_role']
 {% else %}
 roles ['redis_slave_role']
 redis['master_ip'] = '{{
hostvars[groups['redis'][1]]['ansible_eth0']['ipv4']['address'] }}'
 {% endif %}

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[481]

We specify that Redis should listen on all network interfaces:

 redis['bind'] = '0.0.0.0'

Then, we specify which TCP port it will listen on:

 # Define a port so Redis can listen for TCP requests which will allow
other
 # machines to connect to it.
 redis['port'] = 6379

For this example, we use a very simple password in order for the slave Redis instance to
connect:

 # Set up password authentication for Redis (use the same password in all
nodes).
 redis['password'] = 'packtpub'

Like some other machines, we don't want this one to run Rails database migrations, so we
specify this:

 #Don't run database migrations
 gitlab_rails['auto_migrate'] = false

After running install-redis.yml, there should be two extra nodes that have a master
and a slave Redis node, respectively.

Connecting the shared filesystem
The creation of a shared filesystem in this basic architecture is done without the GitLab
omnibus package. We just configure a basic Linux node with NFS functionality:

Script: install-nfs.yml
Jinja template: nfs_exports.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-nfs.yml

The NFS server is a server that is not configured through omnibus, so there is no
gitlab.rb template file. Most of the installation is through the install-nfs.yml file and
the only template is the NFS exports file, which is placed in /etc and transformed.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[482]

Contents of nfs_exports.j2
The NFS exports file is used read by the NFS server at startup to determine which folders
should be shared on the network and to which addresses this export is allowed. In the case
of our example we want the root folder /nfs to be shared to our GitLab application servers
in the 'frontend' Ansible hostgroup. In the Jinja template a for loop is used to iterate
through the hostnames of the 'frontend' hostgroup:

/nfs {% for host in groups['frontend'] %} {{
hostvars[host]['inventory_hostname']
}}(rw,sync,no_root_squash,no_subtree_check) {% endfor %}

After processing, the resulting NFS shared filesystem can only be mounted by the
application servers.

Setting up the application servers
The most important pieces of this infrastructure are the application servers themselves.
They are also installed with Ansible, but they have slightly bigger template files than the
other components because a lot has to be configured:

Script: install-gitlab.yml
Template: gitlab.rb.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-gitlab.yml

Contents of gitlab.rb.j2
The first declaration in this file is which role the instance will play in our infrastructure:

Disable components that will not be on the GitLab application server
roles ['application_role']
nginx['enable'] = true

Along with the role, another function (nginx) is activated, which acts as an auxiliary
function to the application role. NGINX is the reverse proxy in front of the Unicorn web
server.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[483]

An important setting is the external URL that is going to be used to reach GitLab via HTTP.
For our example, we use HTTP, but you can also use HTTPS. The URL is pulled again from
the dynamic inventory:

 # The URL GitLab is available on
 external_url 'http://{{ hostvars[groups['lb'][0]]['inventory_hostname']
}}'

We are going to use NFS as a shared filesystem, so we need to indicate that we use a high-
availability mount point. The application check in the filesystem is mounted; otherwise, it
won't start its services:

 # Indicate that nfs mountpoint is used
 high_availability['mountpoint'] = '/var/opt/gitlab/git-data'

We specify the PgBouncer node as the database for GitLab, and the node will talk to the
active master database. The hostname is pulled from the dynamic inventory again:

 # PostgreSQL connection attributes
 gitlab_rails['db_adapter'] = 'postgresql'
 gitlab_rails['db_encoding'] = 'unicode'
 gitlab_rails['db_password'] = 'packtpub'
 gitlab_rails['db_host'] = '{{
hostvars[groups['pgbouncer'][0]]['inventory_hostname'] }}'
 # IP/hostname of database server
 gitlab_rails['db_port'] = 6432

We specify the Redis host we find in the dynamic inventory:

 # Redis connection details
 gitlab_rails['redis_port'] = '6379'
 gitlab_rails['redis_host'] = '{{
hostvars[groups['redis'][1]]['inventory_hostname'] }}'
 # IP/hostname of Redis server
 gitlab_rails['redis_password'] = 'packtpub'

Because we are using a shared filesystem, it makes sense to keep the UIDs and GIDs the
same:

 # Ensure UIDs and GIDs match between servers for permissions via NFS
 user['uid'] = 9000
 user['gid'] = 9000
 web_server['uid'] = 9001
 web_server['gid'] = 9001
 registry['uid'] = 9002
 registry['gid'] = 9002

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[484]

Next, we use a control flow to test whether the server is a master or a slave to make sure
that only one GitLab application server executes Rails database migrations:

 # Make sure only 1 GitLab server executes migrations
 {% if hostvars[inventory_hostname].role == "slave" %}
 gitlab_rails['auto_migrate'] = false
 {% endif %}

Again, the information attribute that determines this is pulled from the dynamic
inventory. In this example, we don't use HTTPS, so we disable the autogeneration of
certificates:

 #disable letsencrypt for demo purposes
 letsencrypt['enable'] = false

Now that we have looked at all the files, let's try to run them.

Running all the Ansible playbooks
I have created a shell script that runs all steps sequentially, and when one fails, it will stop
processing. It is called deploy-with-ansible.sh. You can run it like this in the HA
configuration directory of your project:

../deploy-with-ansible.sh
tls_private_key.privkey: Refreshing state... (ID:
874768c0573f85ee35688f91b96793940376786c)
aws_key_pair.keypair: Refreshing state... (ID: ec2key)
aws_vpc.gitlabha: Refreshing state... (ID: vpc-0d623120e0d5401f9)
aws_subnet.pub-web-az-b: Refreshing state... (ID: subnet-03908026eb72659e1)
aws_subnet.priv-db-az-a: Refreshing state... (ID: subnet-0e65b8cb35e8ef116)
aws_security_group.bastionhostSG: Refreshing state... (ID:
sg-0c9043cd8f71becab)
aws_internet_gateway.inetgw: Refreshing state... (ID:
igw-05a45a3163391b294)
aws_subnet.priv-db-az-b: Refreshing state... (ID: subnet-023c4157ba90f1805)

You can also run the individual playbooks manually. But before you run any playbooks,
the following environment variable will prohibit SSH connection errors:

export ANSIBLE_HOST_KEY_CHECKING=false

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[485]

When you run the playbooks, please perform these steps in the following order:

Install the bastion hosts as follows:1.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install.yml

Install the master PostgreSQL database as follows:2.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
postgres-core.yml

Install the slave PostgreSQL databases as follows:3.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
postgres-slaves.yml

Install the consul nodes as follows:4.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
consul.yml

Install the PgBouncer nodes as follows:5.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
pgbouncer.yml

Install the Redis nodes as follows:6.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
redis.yml

Install the NFS server as follows:7.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
nfs.yml

Install the GitLab application servers as follows:8.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
gitlab.yml

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[486]

After all the operations are executed successfully, you will end up with a working GitLab
cluster. You can verify whether it works by looking at the properties of your classic load
balancer and looking for the DNS name, as shown in the following screenshot:

If you copy and paste this URL into your browser, a clean GitLab instance that asks for a
password is installed, as shown in the following screenshot:

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[487]

If this isn't working, then check whether the instance is set to InService in the Instances tab
of your load balancer, as follows:

If the status entry says Outofservice, then you need to check whether all instances are
green.

You can log in to all your services with my special connect_ssh.sh script. First, check
whether the hosts are available:

 $./connect_ssh.sh show_host_codes
 hostcode: pg0 -- hostname: "ip-10-0-2-18.eu-west-1.compute.internal"
 hostcode: db1 -- hostname: "ip-10-0-2-125.eu-west-1.compute.internal"
 hostcode: db0 -- hostname: "ip-10-0-2-83.eu-west-1.compute.internal"
 hostcode: db2 -- hostname: "ip-10-0-1-217.eu-west-1.compute.internal"
 hostcode: red0 -- hostname: "ip-10-0-12-18.eu-west-1.compute.internal"
 hostcode: red1 -- hostname: "ip-10-0-11-224.eu-west-1.compute.internal"
 hostcode: frontend1 -- hostname: "ip-10-0-12-25.eu-
west-1.compute.internal"
 hostcode: frontend0 -- hostname: "ip-10-0-11-43.eu-
west-1.compute.internal"
 hostcode: nfs0 -- hostname: "ip-10-0-11-69.eu-west-1.compute.internal"
 hostcode: cs1 -- hostname: "ip-10-0-2-165.eu-west-1.compute.internal"
 hostcode: cs0 -- hostname: "ip-10-0-1-145.eu-west-1.compute.internal"
 hostcode: cs2 -- hostname: "ip-10-0-1-99.eu-west-1.compute.internal"
 hostcode: bastion0 -- hostname: "ec2-34-245-42-209.eu-
west-1.compute.amazonaws.com"
 hostcode: bastion1 -- hostname: "ec2-54-229-146-28.eu-
west-1.compute.amazonaws.com"

You can then connect to the first database server like so:

 $./connect_ssh.sh db0

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[488]

Once connected, you can switch to root with the sudo -i command, check all log files, and
inspect things on the virtual machines.

Hopefully, there were no errors and you have a running GitLab instance, and, if not, you
are able to debug the problem.

Summary
In this chapter, we first looked at what a basic HA architecture of GitLab should look like,
and we determined the minimum amount of infrastructure that should be built. We then
explained how we could do this through AWS. With Terraform, Ansible, and some
scripting, we showed how you can create an HA environment with 14 hosts.

In the next chapter, we will further split the nodes and functionalities to eliminate even
more single points of failure. This will grow your HA capability. Secondly, you prepare
your GitLab system for serving more users because you can scale your system much more
easily to accommodate the higher load.

 Questions
What does HA stand for?1.
What language is Terraform written in?2.
What does EC2 stand for?3.
How many consul nodes are defined in our example?4.
What templating engine is used in Ansible?5.
What script can run all deployment actions at once?6.
If all is OK in the health check, what does the load balancer say?7.
What script can you use to connect to the Amazon hosts with SSH?8.

Creating a Basic HA Architecture Using Horizontal Scaling Chapter 19

[489]

 Further reading
Mastering Ansible – Third Edition by James Freeman and Jesse Keating: https://www.
packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-
edition

Getting Started with Terraform – Second Edition by Kirill Shirinkin: https://www.
packtpub.com/in/networking-and-servers/getting-started-terraform-
second-edition

AWS Certified Developer – Associate Guide – Second Edition by Vipul Tankariya and
Bhavin Parmar: https://www.packtpub.com/in/virtualization-and-cloud/aws-
certified-developer-associate-guide-second-edition

Learn Linux Shell Scripting – Fundamentals of Bash 4.4 by Sebastiaan
Tammer: https://www.packtpub.com/in/networking-and-servers/learn-
linux-shell-scripting-fundamentals-bash-44

https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44

20
Managing a Hybrid HA

Environment
In the previous chapter, we created a basic scalable GitLab architecture using Terraform
and Ansible. In this chapter, we will continue with the same structure, but we will change
some things and create even more resiliency. One of the weak points of the architecture we
first designed was that the frontend servers had more than one GitLab component installed,
which could prove to be a problem if one component breaks down. We will run the Sidekiq
component on another server to mitigate this risk. Another weakness was the shared
filesystem. Network File System (NFS) is known to have some performance and file-
locking problems; GitLab has developed Gitaly as a replacement, and we will install it in
this chapter. Another issue is that there was no monitoring available in the basic scalable
architecture. We will install that in this chapter as well.

In this chapter, we will cover the following topics:

The basic architecture of this solution
A renewed Terraform configuration
Splitting application components into frontend and middleware tiers
Connecting the shared filesystem
Changes in Ansible files
Script enhancements

Managing a Hybrid HA Environment Chapter 20

[491]

Technical requirements
For managing omnibus installs, there is one central configuration file called gitlab.rb.
You need to create it or copy an example. A template is available from https://gitlab.
com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.
rb.template. Upgrades don't replace or edit this file. In large parts of this chapter, I quote
and discuss parts of this file.

To create our virtual infrastructure, we are using Terraform (≥ v0.11.12). You can download
it at https://www.terraform.io. Terraform is a multiplatform binary.

Terraform providers use the following:

provider.ansible v0.0.4: Get it from https://github.com/nbering/terraform-
inventory.
provider.aws v2.1.0: This is automatically downloaded with the terraform
init command (see Starting with the code section of previous chapter).
provider.tls v1.2.0: This is automatically downloaded with the terraform init
command (see Starting with the code section of previous chapter).

For automating our deployments, we are using Ansible (≥ version 2.7). You can download
it from https://github.com/ansible/ansible, or use a package manager such as brew or
pip to install it.

To follow along with the instructions in this chapter, please download the Git repository
with examples available on GitHub, at: https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter20.

The basic architecture of this solution
What will be included in the second iteration of a horizontally scaled GitLab? We have
chosen to split components even more and change the shared filesystem type. We will
introduce two monitoring components.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20

Managing a Hybrid HA Environment Chapter 20

[492]

The following diagram is of the second iteration of the High Availability (HA) solution for
GitLab:

The frontend servers in the basic HA design run the Unicorn/NGINX Rails application, as
well as the background jobs, via the Sidekiq component. These are all installed as part of
the GitLab omnibus package. In the second iteration, you can see that the NFS server in the
diagram has been replaced with a Gitaly server. Gitaly is an Remote Procedure Call (RPC)
server that is specifically designed to handle Git traffic and has the ability to scale better
than NFS servers, while using less bandwidth.

In the basic HA solution, the shared filesystem was a basic Linux NFS Version 4 server that
was mounted on both frontend application servers. In the second iteration, we replaced this
with a dedicated Gitaly server, which you can find in the previous diagram.

The monitoring components are a combination of a Prometheus server (to accumulate time
series data) and a Grafana dashboard (to display metrics from the Prometheus database).
Both components can be installed using the GitLab omnibus package.

Managing a Hybrid HA Environment Chapter 20

[493]

A renewed Terraform configuration
In this new version of the solution, there are some changes in the Terraform part, mainly in
the amount of instances. Let's look at the file that contains the AWS EC2 instances. With
Terraform, you can create very elaborate structures, but for this example, we only add
instances to make it more understandable.

instance.tf
The first machine to add is the Sidekiq node. It will be placed in the frontend servers'
security group (SG-frontendservers). As you can see from the following code, the
node uses an Amazon Machine Image (AMI), which is defined in the variable.tf file.
The instance type is t2.medium; you can find a list of instances types at https://aws.
amazon.com/ec2/instance-types/. The instance description mentions the subnet, the
public key pair, and the security group to be used:

resource "aws_instance" "SIDEKIQ_A" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.medium"
 tags {
 Name = "${var.environment}-SIDEKIQ001"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 subnet_id = "${aws_subnet.public-frontend_az-a.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 }

The key pair that is generated at install time is also inserted into this machine, and the
subnet where it is created is the public frontend one.

Using only one machine would not be very sufficient for our example, so we create an
identical one with the new name of SIDEKIQ_B. It is placed in another availability zone.

The following is the description of this second Sidekiq instance, which is almost similar to
the first, but for the name and availability zone:

resource "aws_instance" "SIDEKIQ_B" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.medium"
 tags {
 Name = "${var.environment}-SIDEKIQ002"

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Managing a Hybrid HA Environment Chapter 20

[494]

 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 }

We create an instance for our monitoring dashboard:

resource "aws_instance" "GRAFANA_A" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.medium"
 tags {
 Name = "${var.environment}-GRAFANA001"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 }

Notice that the Grafana server is also placed in the frontend servers' subnet and security
group. In this example, we are not creating redundant Grafana dashboards. This is possible,
but most companies run this on one machine, which we are also doing for this example.

Like the Grafana instance, the Prometheus server is again placed in the frontend servers
subnet and security group:

resource "aws_instance" "PROMETHEUS_A" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.medium"
 tags {
 Name = "${var.environment}-PROMETHEUS001"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 }

The other main configuration change is in the Ansible host definition.

Managing a Hybrid HA Environment Chapter 20

[495]

ansible_host.tf
We create another Ansible host called SIDEKIQ001, which is coupled to SIDEKIQ_A in
AWS. The extra attribute we give is the group, which we call middleware. This attribute is
used in Ansible scripts to determine which hosts should be processed in a playbook. A
custom attribute we create is role. In a clustered situation, we always designate the server
to be either a slave or a master:

resource "ansible_host" "SIDEKIQ001" {
 inventory_hostname = "${aws_instance.SIDEKIQ_A.private_dns}"
 groups = ["middleware"]
 vars
 {
 ansible_user = "ubuntu"
 role = "slave"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_A.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_A.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-a.cidr_block}"
 }
 }

We also create a second host here, which has the role of master:

resource "ansible_host" "SIDEKIQ002" {
 inventory_hostname = "${aws_instance.SIDEKIQ_B.private_dns}"
 groups = ["middleware"]
 vars
 {
 ansible_user = "ubuntu"
 role = "master"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_B.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_B.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-b.cidr_block}"
 }
 }

Managing a Hybrid HA Environment Chapter 20

[496]

The monitoring components are also created as Ansible hosts. For Grafana, we create an
Ansible group called monitoring-dashboard:

resource "ansible_host" "GRAFANA001" {
 inventory_hostname = "${aws_instance.GRAFANA_A.private_dns}"
 groups = ["monitoring-dashboard"]
 vars
 {
 ansible_user = "ubuntu"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_A.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_A.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-a.cidr_block}"
 }
 }

For the Prometheus server, we create a group called monitoring-server:

resource "ansible_host" "PROMETHEUS001" {
 inventory_hostname = "${aws_instance.PROMETHEUS_A.private_dns}"
 groups = ["monitoring-server"]
 vars
 {
 ansible_user = "ubuntu"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_A.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_A.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-a.cidr_block}"
 }
 }

These are all the changes needed for Terraform to create the Amazon EC2 instances. You
can deploy them using the following command:

terraform apply

Managing a Hybrid HA Environment Chapter 20

[497]

After successful creation of the AWS instances, you should find all instances in the AWS
web console:

We have shown you the new parts of the Terraform configuration, and you have applied
them to your Amazon AWS configuration. Now you can execute Ansible deployment
scripts.

Managing a Hybrid HA Environment Chapter 20

[498]

Splitting application components into
frontend and middleware tiers
The split has already been prepared on the Terraform infrastructure level by creating extra
EC2 instances in the correct subnets. Now it is time to configure those virtual machines.
With the creation of extra instances, we basically defined a split in functionality, which
means we have a frontend tier, a backend tier, and now also a middleware tier. Now we
have to run the Ansible scripts to make the application use that infrastructure. We describe
the function and the name of the script. We mention the Jinja template that is used in the
deployment, and the run command to use is the ansible-playbook command.

Splitting Sidekiq from the frontend
In the former chapter all application services were running on the frontend. In this chapter
we create a new middleware layer by splitting the frontend into more layers.
Our current middleware is Sidekiq background processing, let's put that functionality on
separate nodes. The deployment is contained in the following playbook and template and
you can apply the playbook using the Run command:

Script: install-middleware-services.yml
Jinja template: gitlab.rb.middleware.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-middleware-services.yml

Contents of gitlab.rb.middleware.j2
The GitLab URL or endpoint will be the address of the load balancer. The value of this
address can be extracted from our dynamic Ansible inventory
command, /usr/local/bin/terraform.py. In the Ansible scripts, we can refer to a
specific host variable:

external_url 'http://{{ hostvars[groups['lb'][0]]['inventory_hostname'] }}'

Managing a Hybrid HA Environment Chapter 20

[499]

Sidekiq uses GitLab Shell, which needs to authenticate to the frontend servers as follows:

gitlab_rails['internal_api_url'] = "http://{{
hostvars[groups['frontend'][0]]['inventory_hostname'] }}:8080"

This server should have the application role:

roles ['application_role']

We specifically want to enable Sidekiq on this machine:

Enable sidekiq
sidekiq['enable'] = true

Disable components that will not be on the GitLab application server:

gitaly['enable'] = false
gitlab_workhorse['enable'] = false
unicorn['enable'] = false
postgresql['enable'] = false
nginx['enable'] = false
prometheus['enable'] = false
alertmanager['enable'] = false
pgbouncer_exporter['enable'] = false
gitlab_monitor['enable'] = false

We specify that this will use the central Gitaly server:

Gitaly
 git_data_dirs({
 'default' => { 'path' => '/var/opt/gitlab/git-data','gitaly_address' =>
'tcp://{{ hostvars[groups['gitaly'][0]]['inventory_hostname'] }}:8075' }
 })
 gitlab_rails['gitaly_token'] = 'abc123secret'
 gitaly['enable'] = false

We also have to specify a database connection to pgbouncer:

gitlab_rails['db_adapter'] = 'postgresql'
gitlab_rails['db_encoding'] = 'unicode'
gitlab_rails['db_password'] = 'packtpub'
gitlab_rails['db_host'] = '{{
hostvars[groups['pgbouncer'][0]]['inventory_hostname'] }}'
gitlab_rails['db_port'] = 6432

Managing a Hybrid HA Environment Chapter 20

[500]

Sidekiq also connects to Redis, so we need the relevant connection details:

 gitlab_rails['redis_port'] = '6379'
 gitlab_rails['redis_host'] = '{{
hostvars[groups['redis'][1]]['inventory_hostname'] }}'
 gitlab_rails['redis_password'] = 'packtpub'

We only want a master server to execute migrations:

{% if hostvars[inventory_hostname].role == "slave" %}
 gitlab_rails['initial_root_password'] = "packtpub"

 # Make sure only 1 GitLab server executes migrations
 gitlab_rails['auto_migrate'] = false

 {% endif %}

We definitely want to disable letsencrypt on this server:

#disable letsencrypt for demo purposes
letsencrypt['enable'] = false

After successfully running this script, the middleware tier should exist and we should have
succeeded in transferring Sidekiq from the frontend servers to the middleware servers.

Creating a monitoring instance
In the basic setup, there was no active monitoring installed. For an HA cluster, this is not
something we want. In Chapter 12, Monitoring with Prometheus, we discussed the ways we
can use Prometheus to monitor GitLab instances. We can install it as well using Ansible in
our infrastructure. In the following Ansible playbook script, we install in the cluster:

Script: install-prometheus.yml
Jinja template: gitlab.rb.prometheus.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-prometheus.yml

Contents of gitlab.rb.prometheus.j2
To create a Prometheus server, enable it in the omnibus configuration file:

prometheus_monitoring['enable'] = true

Managing a Hybrid HA Environment Chapter 20

[501]

The server should listen on every interface, as follows:

prometheus['listen_address'] = '0.0.0.0:9090'

Disable all other services:

gitlab_workhorse['enable'] = false
unicorn['enable'] = false
postgresql['enable'] = false
nginx['enable'] = false
prometheus['enable'] = false
alertmanager['enable'] = false
pgbouncer_exporter['enable'] = false
gitlab_monitor['enable'] = false

After running this playbook, we have a Prometheus instance running in our cluster.

Creating a monitoring dashboard with Grafana
The Prometheus server provides the datastore to save metrics. There is a simple admin-
interface which can produce graphs, but for decent monitoring you need a product which
can create better ones. Grafana allows you to create fancy monitoring dashboards with data
from Prometheus. The following Ansible playbook installs and configures this:

Script: install-grafana-dashboard.yml
Jinja template: gitlab.rb.grafana.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-grafana-dashboard.yml

Contents of gitlab.rb.grafana.j2
The URL of our GitLab instance is as follows:

external_url 'http://{{ hostvars[groups['lb'][0]]['inventory_hostname'] }}'

Set the following to true to enable Grafana:

grafana['enable'] = true

Managing a Hybrid HA Environment Chapter 20

[502]

The default admin password is admin; change it here:

grafana['admin_password'] = 'admin'

After running this playbook, the Grafana dashboard is available under the following URL,
at /grafafa.

Connecting the shared filesystem
In the former chapter we used NFS as the location to store git repositories inside of GitLab.
In this chapter we switch to Gitaly, the new application layer that eliminates the need for
NFS. The Ansible playbook for installing Gitaly is new, and is basically a GitLab omnibus
install that only activates the Gitaly service. The playbook, the accompanying template and
the command to run it are:

Script: install-gitaly.yml
Jinja template: gitlab.rb.gitaly.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-gitaly.yml

Contents of the gitlab.rb.gitaly.j2 file
Avoid running unnecessary services on the Gitaly server:

postgresql['enable'] = false
redis['enable'] = false
nginx['enable'] = false
prometheus['enable'] = false
unicorn['enable'] = false
sidekiq['enable'] = false
gitlab_workhorse['enable'] = false

Prevent database connections during gitlab-ctl reconfigure and disable migrations
as follows:

gitlab_rails['rake_cache_clear'] = false
gitlab_rails['auto_migrate'] = false

Configure the gitlab-shell API callback URL:

gitlab_rails['internal_api_url'] = "http://{{
hostvars[groups['frontend'][0]]['inventory_hostname'] }}:8080"

Managing a Hybrid HA Environment Chapter 20

[503]

Make Gitaly accept connections on all network interfaces:

gitaly['listen_addr'] = "0.0.0.0:8075"
gitaly['auth_token'] = 'abc123secret'

Define the storage locations to use:

gitaly['storage'] = [
 { 'name' => 'default', 'path' => '/mnt/gitlab/default/repositories' },
 { 'name' => 'storage1', 'path' => '/mnt/gitlab/storage1/repositories' },
]

After running this Ansible playbook, you should have a working Gitaly server that can be
used to store GitLab items.

Changes in Ansible files
Of course, there have not only been changes in the Jinja templates, but playbooks have aslo
been added. You can see the new list here:

.
 ├── files
 ├── install-bastion-hosts.yml
 ├── install-consul.yml
 ├── install-frontend-services.yml
 ├── install-gitaly.yml
 ├── install-grafana-dashboard.yml
 ├── install-middleware-services.yml
 ├── install-pgbouncer.yml
 ├── install-postgres-core.yml
 ├── install-postgres-slaves.yml
 ├── install-prometheus.yml
 ├── install-redis.yml
 └── templates
 ├── databases.ini.j2
 ├── gitlab.rb.consul.j2
 ├── gitlab.rb.frontend.j2
 ├── gitlab.rb.gitaly.j2
 ├── gitlab.rb.grafana.j2
 ├── gitlab.rb.middleware.j2
 ├── gitlab.rb.pgbouncer.j2
 ├── gitlab.rb.postgres.j2
 ├── gitlab.rb.prometheus.j2
 ├── gitlab.rb.redis.j2
 └── pgpass.j2

Managing a Hybrid HA Environment Chapter 20

[504]

The newly added playbooks can be executed in the following fashion:

Install the Gitaly server as follows:1.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
gitaly.yml

Install the GitLab middleware servers as follows:2.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
middleware-services.yml

Install the Prometheus monitoring server as follows:3.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
prometheus.yml

Install the Grafana monitoring dashboard server as follows:4.

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-
grafana-dashboard.yml

Now that we have shown you all the changes in the Terraform code and Ansible
playbooks, you should have a new, more HA-capable infrastructure. These changes also
impact the scripts that are part of the Git repository.

Script enhancements
The directory in the repository (https://github.com/PacktPublishing/Mastering-
GitLab-12/tree/master/Chapter20) contains a script to connect to the instances that you
first create with Terraform.

The connect_ssh.sh script is changed for the situation in this chapter, so you can connect
to the new instances after they are created. You can execute the script with
show_host_codes to check which hosts you can connect to:

$scripts/connect_ssh.sh show_host_codes
 hostcode: pg0 -- hostname: "ip-10-0-2-195.eu-central-1.compute.internal"
 hostcode: gitaly0 -- hostname: "ip-10-0-11-29.eu-
central-1.compute.internal"
 hostcode: middleware1 -- hostname: "ip-10-0-11-160.eu-
central-1.compute.internal"
 hostcode: middleware0 -- hostname: "ip-10-0-12-252.eu-
central-1.compute.internal"
 hostcode: frontend1 -- hostname: "ip-10-0-11-76.eu-

https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter20

Managing a Hybrid HA Environment Chapter 20

[505]

central-1.compute.internal"
 hostcode: frontend0 -- hostname: "ip-10-0-12-164.eu-
central-1.compute.internal"
...

The new servers for Gitaly are visible in the previous output, and the rest of the output is
truncated for better readability.

Remember, once you are connected, you can switch to root with the sudo -i command,
check all log files, and debug the machine.

Summary
In this chapter, we created a second iteration of an HA architecture of GitLab. The frontend
tier was split into frontend and backend, and a middleware tier containing Sidekiq nodes
was created. The shared filesystem was changed from NFS to Gitaly, and we created nodes
for a monitoring server (Prometheus) and a dashboard (Grafana) to connect to it. We
changed the Terraform files, the Ansible playbooks and templates, and the shell scripts.

In the next chapter, we will go even further into splitting up nodes, and introduce a new
middleware tier, which runs several background nodes that handle different kinds of
traffic.

Questions
Why is NFS not always a good choice to use in the cloud?1.
What component is split from the frontend servers in the enhanced architecture2.
laid out in this chapter ?
What file describes Ansible hosts?3.
How many Grafana dashboards are in this architecture?4.
What is the name of the Ansible group used for Sidekiq?5.

Managing a Hybrid HA Environment Chapter 20

[506]

Further reading
Mastering Ansible – Third Edition by James Freeman and Jesse Keating: https://www.
packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-
edition

Getting Started with Terraform – Second Edition by Kirill Shirinkin: https://www.
packtpub.com/in/networking-and-servers/getting-started-terraform-
second-edition

AWS Certified Developer – Associate Guide – Second Edition by Vipul Tankariya and
Bhavin Parmar: https://www.packtpub.com/in/virtualization-and-cloud/aws-
certified-developer-associate-guide-second-edition

Learn Linux Shell Scripting – Fundamentals of Bash 4.4 by Sebastiaan
Tammer: https://www.packtpub.com/in/networking-and-servers/learn-
linux-shell-scripting-fundamentals-bash-44

https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44

21
Making Your Environment Fully

Distributed
In Chapter 18, Monitoring CI Metrics, and Chapter 19, Creating a Basic HA Architecture
Using Horizontal Scaling, we created a basic scalable GitLab architecture using Terraform
and Ansible. In this chapter, we will create even more nodes and, by doing so, strengthen
the High Availability (HA) capabilities of GitLab. One of the weak points of the
architecture we first designed was that the frontend servers had more than one GitLab
component installed, which could prove to be a problem if one component breaks down.
We will run the Sidekiq component on another server to mitigate this risk. Another
weakness was the shared filesystem.

In this chapter, we will cover the following topics:

The basic architecture of this solution
The changes to the Terraform configuration
Splitting more application components
The clustered Redis/Sentinel configuration
Changes in Ansible files
Script enhancements

Technical requirements
To manage omnibus installs, there is one central configuration file called gitlab.rb. You
need to create it or copy an example. There is a template available and you can find it here:
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-
template/gitlab.rb.template. It is not updated after upgrades. In large parts of this
chapter, I will quote and discuss parts of this file.

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template

Making Your Environment Fully Distributed Chapter 21

[508]

To create our virtual infrastructure, we are going to use Terraform (≥ v0.11.12). You can
download it at https://www.terraform.io. Terraform is a multiplatform binary.

The following Terraform providers will be used:

provider.ansible v0.0.4: Get it from https://github.com/nbering/terraform-
inventory.
provider.aws v2.1.0: This is automatically downloaded with the terraform
init command (see Chapter 19, Creating a Basic HA Architecture Using Horizontal
Scaling, particularly the Preparing to run Terraform to deploy the virtual hardware
section).
provider.tls v1.2.0: This is automatically downloaded with the terraform init
command (see Chapter 19, Creating a Basic HA Architecture Using Horizontal
Scaling, particularly the Preparing to run Terraform to deploy the virtual
hardware section). To automate our deployments, we'll use Ansible (≥ version
2.7). You can download it from https://github.com/ansible/ansible or use a
package manager such as brew or pip to install it.

To follow along with the instructions in this chapter, please download the Git repository
with examples, which is available on GitHub: https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter21.

The basic architecture of this solution
We already created a more scalable combination of GitLab components in the previous
chapter. But, of course, there are even more options. If you wanted go for a 100%
breakdown into smaller, more cloud-native components, you would have to stop using the
omnibus-gitlab package. If you did that, an elastic, fault-tolerant database service such as
Aurora could be used from Amazon itself and other Amazon-specific services such as
ElastiCache. It would mean much more management overhead, but it could be the way to
go if you have the time and money to build big production sites. It would be harder to
switch to another cloud vendor, though.

Because we like to use an example that can be deployed on another cloud and because the
omnibus package is used throughout this book, we will use that again.

https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter21

Making Your Environment Fully Distributed Chapter 21

[509]

In the following diagram, you will find the third iteration of the HA solution for GitLab:

There is no change in the bastion hosts part (SG-bastionhosts) or the backend part (SG-
backendservers). That is still equipped with one master database (sqla) and two read-
only replicas (sqlb and sqlc). The cluster of consul agents and the nodes keep an eye on
the database and notifies the pgbouncer node to switch to the active database node. This
pgbouncer node also multiplexes PostgreSQL client connections. On the frontend side
(SG-frontendservers), there are more changes. The Sidekiq component was installed
alongside other components on the frontend servers in earlier chapters but is now split into
a new layer: a middleware layer (sidekiqa-d). There are four dedicated nodes for Sidekiq
and they have different functions. The first one handles near real-time background jobs
such as merge requests. The second one handles jobs that cannot wait too long (such as
commits and deployments). The third node is responsible for the queues handling CI
pipeline jobs, and the last node handles the other background jobs from the Ruby on Rails
GitLab web application.

Making Your Environment Fully Distributed Chapter 21

[510]

The two Redis nodes that existed in a master-slave configuration in the earlier chapters
have now increased to three (another slave has been added). The Sentinel HA component of
Redis is also installed. It can detect failures in your Redis cluster and can handle automatic
failover. It runs next to Redis on the same node.

The shared storage in use is still Gitaly in this architecture but can be swapped for NFS as
well. Unfortunately, there are no simple solutions to make the shared storage HA-capable.
There are several options, but they are not created out of the box and require tuning.

Some examples include the following:

Amazon Elastic Filesystem (EFS)—it sounds OK, but has been tried by several
people and is not performing well enough to handle the load in GitLab (https://
docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-
using-awss-elastic-file-system-efs).
An NFS cluster with replication software (such as Distributed Replicated Block
Device (DRBD)) and heartbeat software is quite complex to set up.
Gitaly in an HA configuration—this is not ready yet (https://docs.gitlab.com/
ee/administration/high_availability/gitaly.html).

The monitoring components are still present in this architecture and can provide valuable
information about your components.

Performing changes to the Terraform
configuration
Adding more nodes to the infrastructure, as proposed in the basic architecture of this
solution, means we have to change some Terraform files. The first one we will change is the
one where the EC2 instances are defined.

instance.tf
The functional composition of the frontend servers is going to change a lot in this version of
the infrastructure. The first instance will serve regular web UI traffic, the second will serve
only API traffic, and a third instance will be created to handle Git-SSH traffic:

resource "aws_instance" "FRONTEND_C" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"

https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/nfs.html#avoid-using-awss-elastic-file-system-efs
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html
https://docs.gitlab.com/ee/administration/high_availability/gitaly.html

Making Your Environment Fully Distributed Chapter 21

[511]

 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 instance_type = "t2.medium"
 tags {
 Name = "${var.environment}-FRONTEND003"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 }

On the middleware side of things, the amount of Sidekiq nodes is growing. The third node,
which is going to be responsible for CI pipeline jobs, has to be instantiated:

resource "aws_instance" "SIDEKIQ_C" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.micro"
 tags {
 Name = "${var.environment}-SIDEKIQ003"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 }

A fourth Sidekiq node is created to handle real-time jobs that cannot wait:

resource "aws_instance" "SIDEKIQ_D" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.micro"
 tags {
 Name = "${var.environment}-SIDEKIQ004"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 }

Making Your Environment Fully Distributed Chapter 21

[512]

We will need a third Redis node, as the new situation will require a Redis cluster with one
master and two slave nodes, which will be watched by a sentinel cluster:

 resource "aws_instance" "REDISC" {
 subnet_id = "${aws_subnet.public-frontend_az-b.id}"
 key_name = "${aws_key_pair.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.SG-
frontendservers.id}"]
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 instance_type = "t2.micro"
 tags {
 Name = "${var.environment}-REDIS003"
 Environment = "${var.environment}"
 sshUser = "ubuntu"
 }
 }

Now that we have created our AWS instance, we will also define our Ansible host
definitions, which use AWS instances.

ansible_host.tf
The first new Sidekiq host is the pipeline background job handler, which will get the
ci_pipeline role in the Ansible definition:

resource "ansible_host" "SIDEKIQ003" {
 inventory_hostname = "${aws_instance.SIDEKIQ_C.private_dns}"
 groups = ["middleware_pipeline"]
 vars
 {
 ansible_user = "ubuntu"
 role = "ci_pipeline"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_B.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_B.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-b.cidr_block}"
 }
 }

Making Your Environment Fully Distributed Chapter 21

[513]

The second new Sidekiq host is the real-time background job handler, which will get the
realtime role in the Ansible definition:

resource "ansible_host" "SIDEKIQ004" {
 inventory_hostname = "${aws_instance.SIDEKIQ_D.private_dns}"
 groups = ["middleware_realtime"]
 vars
 {
 ansible_user = "ubuntu"
 role = "realtime"
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_B.public_dns}\""
 proxy = "${aws_instance.BASTIONHOST_B.private_ip}"
 subnet = "${aws_subnet.public-frontend_az-b.cidr_block}"
 }
 }

As you can see in the following, we also define the added Redis server with the slave role:

 resource "ansible_host" "REDIS003" {
 inventory_hostname = "${aws_instance.REDIS_C.private_dns}"
 groups = ["redis"]
 vars
 {
 ansible_user = "ubuntu"
 role = "slave"
 ansible_ssh_common_args= " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey.pem -W %h:%p -q
ubuntu@${aws_instance.BASTIONHOST_B.public_dns}\""
 ansible_ssh_private_key_file="/tmp/mykey.pem"
 ansible_python_interpreter="/usr/bin/python3"
 proxy = "${aws_instance.BASTIONHOST_B.private_ip}"
 }
 }

These are all of the changes needed for Terraform to create the Amazon EC2 instances. You
can deploy them using this:

terraform apply

Making Your Environment Fully Distributed Chapter 21

[514]

After successful creation, you should find all instances in the AWS web console:

There are now three extra nodes in the infrastructure. In the next section, we will execute
the Ansible deployment scripts to configure them.

Splitting more application components
The first node we will configure is the frontend server, which is added especially to handle
Git-SSH traffic. First, we mention the Ansible script name. The second item is the Jinja
template that is used to configure the omnibus-gitlab package on that host. The last item
is the command to execute the Ansible script.

Making Your Environment Fully Distributed Chapter 21

[515]

The third application server for Git SSH
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: frontend-services-ssh.yml
Template: gitlab.rb.frontend_ssh.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/frontend-services.yml

This part of the deployment is the installation of the Git SSH frontend application servers.

Contents of gitlab.rb.frontend_ssh.j2
We will have to define an internal URL, which is used to authenticate users:

gitlab_rails['internal_api_url'] = "http://{{
hostvars[groups['frontend'][0]]['inventory_hostname'] }}:8080"

We disable all other services on this node:

Disable components that will not be on the GitLab application server
 roles ['application_role']
 nginx['enable'] = false
 sidekiq['enable'] = false
 unicorn['enable'] = false

The repositories should be reachable for Git SSH:

Gitaly
 gitlab_rails['gitaly_token'] = 'abc123secret'
 git_data_dirs({
 'default' => { 'path' => '/var/opt/gitlab/git-data','gitaly_address' =>
'tcp://{{ hostvars[groups['gitaly'][0]]['inventory_hostname'] }}:8075' }
 })
 gitlab_rails['gitaly_token'] = 'abc123secret'
 gitaly['enable'] = false

Making Your Environment Fully Distributed Chapter 21

[516]

Let's keep the user IDs the same everywhere:

Ensure UIDs and GIDs match between servers for permissions via shared
filesystem
 user['uid'] = 9000
 user['gid'] = 9000
 web_server['uid'] = 9001
 web_server['gid'] = 9001
 registry['uid'] = 9002
 registry['gid'] = 9002

Also, here, don't run migrations, because only one node should do this:

gitlab_rails['auto_migrate'] = false

We don't want this node to generate SSL certificates:

#disable letsencrypt for demo purposes
letsencrypt['enable'] = false

The middleware layer – Sidekiq
As explained in the The basic architecture of this solution section of this chapter, we created
four separate Sidekiq nodes. They were created using Terraform. Now, we have to
configure them with four different Ansible scripts.

The ASAP Sidekiq instance
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: install-sidekiq-asap.yml
Template: gitlab.rb.sidekiq_asap.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-sidekiq-asap.yml

This part of the deployment is the installation of the Sidekiq node for background jobs that
need to run as soon as possible.

Making Your Environment Fully Distributed Chapter 21

[517]

Contents of gitlab.rb.sidekiq_asap.j2
We set up specific queues for this sidekiq-cluster, the realtime instance:

sidekiq_cluster['enable'] = false
 sidekiq_cluster['ha'] = true
 sidekiq_cluster['max_concurrency'] = 15 # The maximum number of threads
each Sidekiq process should run
 sidekiq_cluster['queue_groups'] = [
 "update_merge_requests,auto_merge",
 "process_commit",
 "deployment"
]

Disable other services that start by default on an omnibus-gitlab installation:

Disable all other services
 gitlab_workhorse['enable'] = false
 unicorn['enable'] = false
 postgresql['enable'] = false
 nginx['enable'] = false
 prometheus['enable'] = false
 alertmanager['enable'] = false
 pgbouncer_exporter['enable'] = false
 gitlab_monitor['enable'] = false
 sidekiq['enable'] = false
 gitaly['enable'] = false

This Sidekiq instance now only handles background jobs for commits and deployments.

The real-time Sidekiq instance
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: install-sidekiq-realtime.yml
Template: gitlab.rb.sidekiq_realtime.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-sidekiq-realtime.yml

This part of the deployment is the installation of the Sidekiq node that handles real-time
communications.

Making Your Environment Fully Distributed Chapter 21

[518]

Contents of gitlab.sidekiq.realtime.j2
The first settings enable the cluster and define HA settings:

sidekiq_cluster['enable'] = false
 sidekiq_cluster['ha'] = true
 sidekiq_cluster['max_concurrency'] = 20 # The maximum number of threads
each Sidekiq process should run

We set up specific queues for this sidekiq-cluster, the realtime instance:

sidekiq_cluster['queue_groups'] = [
 "merge",
 "pipeline_processing"
]

Disable other services:

Disable all other services
 gitlab_workhorse['enable'] = false
 unicorn['enable'] = false
 postgresql['enable'] = false
 nginx['enable'] = false
 prometheus['enable'] = false
 alertmanager['enable'] = false
 pgbouncer_exporter['enable'] = false
 gitlab_monitor['enable'] = false
 sidekiq['enable'] = false
 gitaly['enable'] = false

This Sidekiq instance only handles background jobs that need to happen in real time;
otherwise, users have a hanging web interface. The queues that are processed contain jobs
that perform merges and pipeline processing tasks.

The pipeline Sidekiq instance
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: install-sidekiq-pipeline.yml
Template: gitlab.rb.sidekiq_pipeline.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-sidekiq-pipeline.yml

Making Your Environment Fully Distributed Chapter 21

[519]

This part of the deployment is the installation of the Sidekiq node that handles jobs in CI
pipelines.

Contents of gitlab.sidekiq.pipeline.j2
The first settings enable the cluster and define HA settings:

sidekiq_cluster['enable'] = false
 sidekiq_cluster['ha'] = true
 sidekiq_cluster['max_concurrency'] = 10 #

Again, we set up specific queues for this sidekiq-cluster, the pipeline instance:

sidekiq_cluster['queue_groups'] = [
 "pipeline_processing",
 "pipeline_creation",
 "pipeline_default,pipeline_cache,pipeline_hooks,pipeline_background"
]

This Sidekiq node is dedicated to run tasks that have to do with the CI pipeline
functionality in GitLab. The reason to create a specific one is that it guarantees that a very
busy build pipeline does not slow your whole GitLab application down.

The normal Sidekiq instance
You probably expect the fourth Sidekiq node to also have a special function. It doesn't. It's
just the same Sidekiq node as in the previous architecture, and it runs all other jobs.

The clustered Redis/Sentinel configuration
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: install-redis-cluster.yml
Template: gitlab.rb.redis-cluster.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install-redis-cluster.yml

This part of the deployment is the installation of the extra Redis slave and Sentinel node.

Making Your Environment Fully Distributed Chapter 21

[520]

Contents of gitlab.rb.redis-cluster.j2
We have to enable Redis:

Enable Redis
 redis['enable'] = true

Disable all other services because omnibus-gitlab defaults to starting them all:

sidekiq['enable'] = false
 gitlab_workhorse['enable'] = false
 unicorn['enable'] = false
 postgresql['enable'] = false
 nginx['enable'] = false
 prometheus['enable'] = false
 alertmanager['enable'] = false
 pgbouncer_exporter['enable'] = false
 gitlab_monitor['enable'] = false
 gitaly['enable'] = false

Check the role of the Redis server:

{% if hostvars[inventory_hostname].role == "master" %}
 roles ['redis_sentinel_role', 'redis_master_role']
 {% else %}
 roles ['redis_sentinel_role', 'redis_slave_role']
 redis['master_ip'] = '{{
hostvars[groups['redis'][1]]['ansible_eth0']['ipv4']['address'] }}'
 {% endif %}

Make sure Redis listens on all interfaces:

redis['bind'] = '0.0.0.0'

Make sure sentinel listens on all interfaces:

General sentinel settings
 sentinel['bind'] = '0.0.0.0'
 sentinel['quorum'] = 2

Define a port so Redis can listen for TCP requests, which will allow other machines to
connect to it:

redis['port'] = 6379

Making Your Environment Fully Distributed Chapter 21

[521]

Set up password authentication for Redis (use the same password in all nodes):

redis['password'] = 'packtpub'

Don't run database migrations:

gitlab_rails['auto_migrate'] = false

The four-node Sidekiq configuration should be running and makes sure every background
job receives the right priority.

Changes in Ansible files
Of course, there have not only been changes in the Jinja; templates playbooks has also been
added. You can see the added files in a list here:

.
 ├── install-frontend-services-ssh.yml
 ├── install-sidekiq-asap.yml
 ├── install-sidekiq-pipeline.yml
 ├── install-sidekiq-realtime.yml
 ├── install-redis-cluster.yml
 └── templates
 ├── gitlab.rb.frontend_ssh.j2
 ├── gitlab.rb.redis-cluster.j2
 ├── gitlab.rb.sidekiq_asap.j2
 ├── gitlab.rb.sidekiq_pipeline.j2
 ├── gitlab.rb.sidekiq_realtime.1.j2

The newly added or changed playbooks can be executed in the following fashion.

Installing the frontend services (web) server can be done as follows:

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-frontend-
services.yml

Installing the frontend services (SSH) server can be done as follows:

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-frontend-
services-ssh.yml

Installing the GitLab sidekiq-asap servers can be done as follows:

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-sidekiq-
asap.yml

Making Your Environment Fully Distributed Chapter 21

[522]

Installing the GitLab sidekiq-pipeline servers can be done as follows:

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-sidekiq-
pipeline.yml

Installing the GitLab sidekiq-realtime servers is done as follows:

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-sidekiq-
realtime.yml

Installing the Redis cluster can be done as follows:

ansible-playbook -i /usr/local/bin/terraform.py deploy/install-redis-
cluster.yml

The templates and scripts could also have been designed by creating Ansible roles and by
introducing a more modular approach, but handling changes in Ansible scripts makes the
example easier to read, especially in combination with the Terraform files.

Script enhancements
The connect_ssh.sh script is changed as well (following added hosts can be seen as an
example), so you can connect to the new instances after they are created:

$scripts/connect_ssh.sh show_host_codes
 hostcode: middleware1 -- hostname: "ip-10-0-11-160.eu-
central-1.compute.internal"
 hostcode: middleware2 -- hostname: "ip-10-0-11-160.eu-
central-1.compute.internal"
 hostcode: middleware3 -- hostname: "ip-10-0-12-252.eu-
central-1.compute.internal"

The new server for the Git SSH connections is as follows:

hostcode: frontend2 -- hostname: "ip-10-0-12-164.eu-
central-1.compute.internal"

The Redis cluster is as follows:

 hostcode: red0 -- hostname: "ip-10-0-12-240.eu-central-1.compute.internal"
 hostcode: red1 -- hostname: "ip-10-0-11-54.eu-central-1.compute.internal"
 hostcode: red2 -- hostname: "ip-10-0-11-54.eu-central-1.compute.internal"

The new servers for the frontend (Git SSH), and middleware (extra Sidekiq nodes), and
Redis are listed in the preceding code.

Making Your Environment Fully Distributed Chapter 21

[523]

Summary
In this chapter, we created a third iteration of an HA architecture of GitLab. The frontend
tier was increased with one server and, in the middleware tier, extra Sidekiq nodes were
created. Also, we created an extra Redis node. We changed the Terraform files, the Ansible
playbooks and templates, and the shell scripts. In the next chapter, we are going to test Geo,
for replication across data centers.

Questions
What three frontend services were split in this chapter?1.
How many Sidekiq nodes are created?2.
How many Redis nodes are created?3.
What is watching Redis and signals downtime?4.
How can you reach Grafana after installing this infrastructure?5.

Further reading
Mastering Ansible – Third Edition by James Freeman and Jesse Keating: https://www.
packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-
edition

Getting Started with Terraform – Second Edition by Kirill Shirinkin: https://www.
packtpub.com/in/networking-and-servers/getting-started-terraform-
second-edition

AWS Certified Developer – Associate Guide – Second Edition by Vipul Tankariya and
Bhavin Parmar: https://www.packtpub.com/in/virtualization-and-cloud/aws-
certified-developer-associate-guide-second-edition

Learn Linux Shell Scripting – Fundamentals of Bash 4.4 by Sebastiaan
Tammer: https://www.packtpub.com/in/networking-and-servers/learn-
linux-shell-scripting-fundamentals-bash-44

Advanced Solutions in Go - Testing and Distributed Systems [Video] by Aaron
Torres: https://www.packtpub.com/in/application-development/advanced-
solutions-go-testing-and-distributed-systems-video

https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video
https://www.packtpub.com/in/application-development/advanced-solutions-go-testing-and-distributed-systems-video

22
Using Geo to Create Distributed

Read-Only Copies of GitLab
In the previous chapters, we created a basic scalable GitLab architecture using Terraform
and Ansible. In this chapter, we will continue with this technique, but we scale down the
number of nodes that we'll use so that we don't over complicate matters. To create globally
synchronized read-only copies of GitLab instances, we will need to create Geo-enabled
GitLab instances that can replicate data. The Geo feature is part of the GitLab enterprise
license, so you'll need this license or a trial version to activate it.

You could try and sync copies of databases and files yourself with standard tools such as
rsync, but Geo is much more fine-grained than they are. It offers synchronization that's
based on events and doesn't continually scan for change delta's such as rsync. Another of
Geo's features is that it can do HA failover from your primary GitLab instance to a
secondary one. We will demonstrate how to set up a two-node Geo installation in this
chapter.

In this chapter, we will cover the following topics:

The basic architecture of this solution
Preparing the infrastructure
Setting up Geo

Technical requirements
To successfully run the code sample you need a trail license from GitLab which you can
generate here: https://about.gitlab.com/free-trial/. The license that you receive via
email should be saved in the local copy of the code example repository in Chapter22/geo-
setup/deploy/files directory in Gitlab.gitlab-license file.

https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[525]

To manage omnibus installations, you need to use a central configuration file called
gitlab.rb. You'll need to create it yourself or copy an example of one. A template of this
configuration file is available at https://gitlab.com/gitlab-org/omnibus-gitlab/blob/
master/files/gitlab-config-template/gitlab.rb.template. Please note that it isn't
updated after upgrades. In some sections of this chapter, I will quote and discuss parts of
this file.

In order to create our virtual infrastructure, we are going to use Terraform (v0.11.12 or
later). You can download it from https://www.terraform.io. Terraform is a multiplatform
binary. This means it can run on Linux, macOS, and Windows. This makes it easy to install.

Terraform providers need the following:

provider.ansible v0.0.4: You can get it from https://github.com/nbering/
terraform-inventory

provider.aws v2.1.0: Automatically downloaded with the terraform init
command (see Starting with the code of Chapter 19, Creating a Basic HA
Architecture Using Horizontal Scaling)
provider.tls v1.2.0: Automatically downloaded with the terraform init
command(see Starting with the code of Chapter 19, Creating a Basic HA
Architecture Using Horizontal Scaling)

To automate our deployments, we will use Ansible (version 2.7 or later). You can download
it from https://github.com/ansible/ansible, or use a package manager such as brew or
pip to install it.

To follow along with the instructions in this chapter, please download this book's GitHub
repository, along with its examples, which are available at
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter22.

The basic architecture of this solution
The following diagram shows the architecture for this solution. The main feature of this
setup is that you have a master GitLab installation on site A (called gitlab-eu) and have it
completely replicated to site B(called gitlab-us). This way, you can create read-only mirrors
of a GitLab instance all over the world. Remote users can then fetch files and projects from
that server and push them to the primary GitLab instance. To create instances in different
AWS regions, we will need to create two Virtual Private Clouds(VPC) and copy the
infrastructure. We need to make sure that the sites can reach each other:

https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://www.terraform.io
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/nbering/terraform-inventory
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/PacktPublishing/Mastering-GitLab-12/tree/master/Chapter22

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[526]

What this boils down to is that we have to set up database replication and application
replication, which is exactly what Geo does. It takes care of the management side of things.
For this example, we chose site A to be Amazon's Europe-Central-1 region and site B to be
the US-West-1 region.

Preparing the infrastructure
If we want to automate the installation of the GitLab Geo-enabled instances, we have to
change our Terraform setup a bit. Because we want to use two different regions, we are
going to use Terraform modules. In the previous chapters, we only used the context of the
root module, but now we are going to expand on the module concept.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[527]

The Terraform AWS provider always operates in a certain region's context, and we can use
these modules to create a GitLab instance template that will be installed as service modules
for site A and site B.

The example project has the following file structure:

.
├── connect.sh
├── deploy
│ ├── configure_replication.yml
│ ├── files
│ │ └── Gitlab.gitlab-license
│ ├── install_bastionhost.yml
│ ├── install_gitlab.yml
│ └── templates
│ ├── gitlab.rb.j2
│ ├── gitlab.rb.primary.j2
│ └── gitlab.rb.secondary.j2
├── main.tf
├── modules
│ └── services
│ ├── gitlab
│ │ ├── main.tf
│ │ ├── outputs.tf
│ │ └── vars.tf
│ └── keypair
│ ├── main.tf
│ ├── outputs.tf
│ └── vars.tf
├── readme.md
└── vars.tf

In the main directory, we have the following files:

connect.sh: A script so that we can SSH to the machines that are created
main.tf: The top-level Terraform declarations
readme.md: Provides an explanation about the files
vars.tf: Provides a definition of some of the variables that are used in other
files

Now, let's go through the files in this directory.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[528]

The root module explained – main.tf
At the top of the file, you will see the different sites that are defined, all of which call the
GitLab module in the modules/services/ directory.

The first site is the main site that's located in the EU. The GitLab module takes several
arguments that allow us to specify different settings for each site:

module "gitlab_eu" {
 source = "modules/services/gitlab/"
 region = "eu-central-1"
 instance_type = "t2.medium"
 vpc_cidr_block = "10.0.0.0/16"
 subnet_frontend_cidr_block = "10.0.1.0/24"
}

The secondary Geo site is going to be in the US, on the West Coast. We also chose a
different internal subnet to make it different from the EU one:

module "gitlab_us" {
 source = "modules/services/gitlab/"
 region = "us-west-2"
 instance_type = "t2.medium"
 vpc_cidr_block = "172.16.0.0/16"
 subnet_frontend_cidr_block = "172.16.1.0/24"
}

The following entries in this file are the ansible_host definitions. We need them to be on
this level because Ansible is going to execute transactions in all the regions. Because the
declarations are on the top level, we can reference output variables in child modules.
Another approach would be to run Ansible scripts separately for each location, but that
would lead to a lot of duplication:

resource "ansible_host" "GITLABHOST001" {
 inventory_hostname = "${module.gitlab_eu.gitlabhost_fqdn}"
 groups = ["gitlab"]
 vars
 {
 role = "primary"
 geo_primary_address = "${module.gitlab_eu.lb_address}"
 geo_secondary_address = "${module.gitlab_us.lb_address}"
 ansible_user = "${var.sshuser}"
 ansible_ssh_private_key_file = "${var.ssh_private_key_primary}"
 ansible_python_interpreter = "${var.python_interpreter}"
 ansible_ssh_common_args = " -o ProxyCommand=\"ssh -o
StrictHostKeyChecking=no -i /tmp/mykey1.pem -W %h:%p -q

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[529]

ubuntu@${module.gitlab_eu.bastionhost_fqdn}\""
 proxy = "${module.gitlab_eu.bastionhost_private_ip}"
 subnet = "10.0.1.0/24"
 }
}

The ansible_host declaration in the preceding code isn't very different from what was
shown in the previous chapters, but there are some differences. The first obvious one is that
we define geo_primary_address and geo_secondary_address. These are the external
addresses of the load balancers. We need these variables because Ansible will insert the
values in the configuration files that are installed on each site. Another general difference is
that you will see that more variables have been defined. This is happening because we have
more sites now, and so some values have to be more generic.

Utilizing the keypair module –
modules/services/keypair/main.tf
This module is responsible for creating a public/private keypair that is used to connect to
the instances with SSH. It was available in the previous chapters, but it was in the root
module. Now, it is a standalone module that's called from the GitLab module with certain
arguments:

provider "aws" {
 region = "${var.region}"
}

resource "tls_private_key" "mykey"
{
 algorithm = "RSA"
 rsa_bits = 4096
}
resource "aws_key_pair" "keypair"
{
 public_key = "${tls_private_key.mykey.public_key_openssh}"
}

At the top of the preceding code, you can see the region that's been defined. This is an
argument on the top level that's passed through to the child module.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[530]

Variables for the keypair module –
modules/services/keypair/vars.tf
The vars.tf file determines which variables are expected to be defined for this module:

variable region{}

As you can see, it should be called with the region argument.

Outputs from the keypair module –
modules/services/keypair/output.tf
The only function of this module is to create keys, so the output variable that's defined is
the value of this key:

output "mykey" {
 value = "${aws_key_pair.keypair.key_name}"
 sensitive = true
 }

Usually, a generated key is sensitive information, and you can suppress the output of the
value to the Terminal with sensitive=true. It's false by default.

Explaining the GitLab module
This module can be used as a template for GitLab installations. Compared to the structure
of the .tf files in previous chapters, there are more variables being defined and less have
been hardcoded. This is because using modules forces you to refactor quite a bit.

The main module file – modules/services/gitlab/main.tf
This is the main file of the GitLab module. It's quite big, but we kept it this way to focus on
the overall architecture. With Terraform, we could refactor this into a well-formed module
structure, but we'll keep it simple for this demonstration.

At the top of the file, we define the region so that we can use this variable in other modules:

provider "aws" {
 region = "${var.region}"
}

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[531]

The next module that we call is the keypair module, which will provider SSH key pairs to
the instances. As you can see, the only arguments are the location of the module file and the
region:

module "keypair" {
 source = "../keypair"
 region = "${var.region}"
}

Then, we define the actual EC2 instances. We use the output variable from the keypair
module by referring to module.keypair.key_name. So, in order to call variables that exist
in the child modules, you need to prepend module:

resource "aws_instance" "gitlab_host" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 subnet_id = "${aws_subnet.subnet_public_frontend.id}"
 key_name = "${module.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.sg_gitlab.id}"]
 instance_type = "${var.instance_type}"
}

We also need to create a bastion host, which we will use to execute Ansible commands:

resource "aws_instance" "bastion_host" {
 ami = "${lookup(var.aws_ubuntu_amis,var.region)}"
 subnet_id = "${aws_subnet.subnet_public_frontend.id}"
 key_name = "${module.keypair.key_name}"
 vpc_security_group_ids = ["${aws_security_group.sg_bastionhost.id}"]
 instance_type = "t2.micro"
}

Then, there is the very important load balancer node, which is the frontend component
facing the internet:

resource "aws_elb" "lb" {
 subnets = ["${aws_subnet.subnet_public_frontend.id}"]
 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:80"
 interval = 30
 }
 listener {
 instance_port = 80
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[532]

 }
 listener {
 instance_port = 5432
 instance_protocol = "tcp"
 lb_port = 5432
 lb_protocol = "tcp"
 }

As you can see, an additional port has been defined for PostgreSQL (5432), which is closed
by default. We will add the firewall rule to allow traffic between the sites later. The rest of
the objects that are defined in this file are the same as in the previous chapters.

The variable file – modules/services/gitlab/vars.tf
In this file, a lot of the variables are defined for the GitLab module. All of them can be
overridden, but have a default value set. The first variable is expected as an argument and
it defines the region. This makes this module usable in multiple AWS regions:

variable "region" {
 description = "Which Amazon region this instance will run"
 }

Another input for this module is the type of Amazon instance we are using:

variable "instance_type" {
 description = "Which type of Amazon EC2 instance to use"
 }

For each region, we define the base image to be used:

 variable "aws_ubuntu_amis"
 {
 description = "List of default AMI images per region"
 default = {
 "eu-central-1" = "ami-0f041b9708f60ca57"
 "us-west-2" = "ami-0ddba1929e996e2dc"
 }

We then define the management IPs (mgmt_ips) of hosts that can connect to the bastion
hosts:

 }
 variable "mgmt_ips" {
 default = ["0.0.0.0/0"]
 }

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[533]

The private range to be used in the VPC is also taken as input:

 variable "vpc_cidr_block" {
 description = "Which network range to use"
 }

Just like the range, we need to use the frontend private network:

 variable "subnet_frontend_cidr_block" {
 description = "Which network range to use"
 }

All of the variables in this file are used, and the ones without a default value should be
given as input.

The outputs for the module –
modules/services/gitlab/outputs.tf
The GitLab module itself also has outputs that are defined. These are used in the
ansible_host declarations in the top-level main.tf file.

The load balancer Fully Qualified Domain Name (FQDN)is as follows:

output "lb_address"{
 value ="${aws_elb.lb.dns_name}"
 }

The bastion FQDN is as follows:

 output "bastionhost_fqdn" {
 value= "${aws_instance.bastion_host.public_dns}"
 }

The private IP of the bastion host is as follows:

 output "bastionhost_private_ip" {
 value= "${aws_instance.bastion_host.private_ip}"
 }

The private IP of the GitLab instance is as follows:

 output "gitlab" {
 value= "${aws_instance.bastion_host.private_ip}"
 }

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[534]

The FQDN of the GitLab instance is as follows:

output "gitlabhost_fqdn" {
 value = "${aws_instance.gitlab_host.public_dns}"
 }

The three files (main.tf, vars.tf, and outputs.tf), when put together, form the GitLab
module that's called for each site.

Setting up Geo
GitLab Geo is a feature of GitLab that is part of the premium Enterprise version and higher.
It is used to create a replica of a whole GitLab instance in another geographical location.
Items such as user accounts, issues, events, and other objects are synced—not only items
from the database, but also files from the filesystem.

There are several steps involved in installing Geo for your environment:

Install the GitLab software and license on both nodes, but don't activate them.1.
Prepare the database replicas.2.
Change the SSH key lookup method to the database.3.
Add the secondary node via the web UI.4.

The first two steps in our example project can be executed by the Ansible scripts that are
part of the repository for this book. Steps 3 and step 4 have to be done manually. Let's deep
dive into these steps.

Installing the GitLab software and license
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: install_gitlab_primary.yml
Template: gitlab.rb.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/install_gitlab_primary.yml

This Ansible script will configure and start the database replication between the primary
and secondary Geo nodes.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[535]

Contents of gitlab.rb.j2
The only entry in the gitlab.rb file is geo_primary_role. Assigning this role will install
every component on the server:

roles ['geo_primary_role']

We do this in order to install the license automatically as well. It should be placed in the
files directory of this repository before running the Ansible script. It will copy the file to
/etc/gitlab.

The following part of the Ansible script is responsible for doing this:

- name: Install license file to enable geo functionality
copy:
src: "Gitlab.gitlab-license"
dest: /etc/gitlab
mode: 0755

It will only work on the initial installation of GitLab. Afterward, changes to the license have
to be done via the web UI. Also, if you don't have this license file in place, the installation
will fail. Comment out or remove the task if you want to install the license later or via the
web UI.

When GitLab is installed, we can run the scripts so that we can start replicating the
databases.

Preparing the database replicas
The Ansible playbook that is used to configure the node consists of different parts. It
consists of the following:

Script: configure_replication.yml
Template: gitlab.rb.primary.j2, gitlab.rb.secondary.j2
Run command: ansible-playbook -i /usr/local/bin/terraform.py
deploy/configure_replication.yml

This Ansible script will configure and start the database replication between the primary
and secondary Geo nodes.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[536]

Contents of gitlab.rb.primary.j2
We have to define the main URL for the GitLab instance:

external_url 'http://{{
hostvars[groups['gitlab'][0]]['geo_primary_address'] }}'

For this demonstration, we will disable SSL:

letsencrypt['enable'] = false

The role remains the same:

roles ['geo_primary_role']

In the Ansible script, we are going to generate a database password that we will use on our
secondary node as well:

postgresql['sql_user_password'] = "{{ generated_db_pass }}"

We will explicitly make the PostgreSQL database listen on the eth0 interface:

postgresql['listen_address'] = "{{
hostvars[groups['gitlab'][0]]['ansible_eth0']['ipv4']['address'] }}"

Here, we will define the IP addresses that will be allowed to connect to the database. We
have put the primary and secondary hostnames in here by using variables from the Ansible
inventory:

postgresql['md5_auth_cidr_addresses'] = %w({{
hostvars[groups['gitlab'][0]]['geo_primary_address'] }} {{
hostvars[groups['gitlab'][0]]['geo_secondary_address'] }})

The following setting determines that there is only one other node that is being replicated.
If we are going to add more Geo nodes, we have to increase this number:

postgresql['max_replication_slots'] = 1

In the Ansible script, we create a special replication user that is used to synchronize the
databases:

postgresql['sql_replication_user'] = "gitlab_replication"

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[537]

For the first installation of this synchronization, we don't want migrations to run, nor
change the database structures:

gitlab_rails['auto_migrate'] = false

After running the first part of the Ansible script, you should see a PostgreSQL database
ready for synchronization and a TLS (Transport Layer Security) certificate ready for
distribution in the project directory (it is copied by the script).

Contents of gitlab.rb.primary.j2
The secondary database node is also configured in this script. The gitlab.rb file is a bit
different, but we can see the role that's defined at the top:

roles ['geo_secondary_role']

Here's listen_address for PostgreSQL that's defined:

 postgresql['listen_address'] = ""{{
hostvars[groups['gitlab'][1]]['ansible_eth0']['ipv4']['address'] }}""

We can also see the two addresses of the database servers in the array of allowed hosts:

postgresql['md5_auth_cidr_addresses'] = ["{{
hostvars[groups['gitlab'][1]]['ansible_eth0']['ipv4']['address'] }}"]

The database password hash that was generated on the primary node is inserted here, as
well as the clear text password:

postgresql['sql_user_password'] = "{{ generated_db_pass }}"
gitlab_rails['db_password'] = 'packtpub'

The Geo tracking database is also installed on the secondary node. This can help speed up
synchronization:

 geo_secondary['db_fdw'] = true

After running this Ansible script, the databases should be syncing. The next step is to
prepare GitLab itself.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[538]

Changing the SSH key lookup method to the
database
The Ansible script that's used to install GitLab already copies the host keys and settings in
order to enable fast SSH key lookup. The only thing that's left to do to enable this feature
(which is necessary for Geo) is to disable writes to the authorized_keys file by using
GitLab. The following screenshot shows how to adjust performance optimization:

This is done by unchecking the Write to "authorized_keys" file option in Admin Area |
Settings | Network | Performance optimization in the web UI.

Adding the secondary node via the web UI
Visit the admin page for Geo by going to Admin Area | Geo (/admin/geo/nodes). Then,
you have to do the following:

Add the secondary Geo by specifying the HTTP(s) URL.1.
Make sure that This is a primary node isn't checked.2.
If you want, you can pick which groups should be copied by the secondary node.3.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[539]

Don't fill in anything to replicate.4.
Click the Add button.5.
On your secondary server, restart the service:6.

gitlab-ctl restart

You can run a check to see whether everything is in order:7.

gitlab-rake gitlab:geo:check

 Go to the primary server and execute the check:8.

gitlab-rake gitlab:geo:check

If everything is OK, the initial synchronization will start in the background.

Activating hashed storage
Since GitLab 12.0, hashed storage has become mandatory for using Geo. It was introduced
in GitLab 10.0 and is much faster then the legacy storage option. The biggest use case for
using hashed storage is that it eliminates the synchronization of URL and disk
location(foldername). Before hashed storage, when a project was moved to another group,
it was effectively relocated to another top-level folder. If, for any reason, a backup has to be
restored, you had to hope that the name wasn't already taken. With hashed storage, every
project uses a unique ID.

For Geo, this means that a move to another top-level folder will not trigger mass
synchronizations. It only has to change a reference. This makes using hashed storage with
Geo a lot faster as well.

You can enable this by going to the Repository page in the Admin Area | Settings |
Repository settings and checking the Use hashed storage paths for newly created and
renamed projects checkbox:

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[540]

Now, let's create a new project and check the file structure of the disk of one of the nodes in
the /var/opt/gitlab/git-data/repositories path:

$tree -L 4 "@hashed"/
@hashed/
└── e6
 └── 29
 ├── e629fa6598d732768f7c726b4b621285f9c3b85303900aa912017db7617d8bdb.git
 │ ├── HEAD
 │ ├── branches
 │ ├── config
 │ ├── description
 │ ├── hooks
 │ ├── info
 │ ├── objects
 │ └── refs

You should see that there are no project names anymore, just hash values.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[541]

Checking the status of the secondary node
At this point, the secondary Geo should be set up. We can check the status of the node by
browsing to Admin Area | Geo. You should see an enabled Geo secondary node and some
information about the state of the synchronization. When the first synchronization starts,
the initial sync called 'backfill' runs:

If you encounter errors in this dashboard, then note that they are mainly caused by the
database replication not working properly or because something is blocking
communication between the nodes. Firewalls could be blocking traffic, or network links
may be down. It is also possible that your custom SSL certificates aren't properly installed
or are not valid.

 Currently, this is what is synced:

Git repositories
Wikis
Large File storage (LFS)objects
Issues, merge requests, snippets, and comment attachments
Users, groups, and project avatars

In this section, we have covered setting up Geo with some Ansible scripts that did a lot of
the manual work in the Terminal. We finished by setting up some options in the web UI.

Using Geo to Create Distributed Read-Only Copies of GitLab Chapter 22

[542]

Summary
In this chapter, we created a final HA architecture of GitLab. If you want to globally sync
GitLab to different locations, you can use the Geo feature, which is part of the Enterprise
Edition of GitLab. You can set up two VPCs in Amazon and create two separate hosts that
will synchronize.

Questions
How many load balancers are there in this chapter's scenario?1.
Which Terraform feature is used in this chapter?2.
Where can you upload a license to install on the command line?3.
What is necessary to run Geo and make it work?4.
How is the initial synchronization called?5.

Further reading
Mastering Ansible – Third Edition by James Freeman and Jesse Keating: https://www.
packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-
edition

Getting Started with Terraform – Second Edition by Kirill Shirinkin: https://www.
packtpub.com/in/networking-and-servers/getting-started-terraform-
second-edition

AWS Certified Developer – Associate Guide – Second Edition by Vipul Tankariya and
Bhavin Parmar: https://www.packtpub.com/in/virtualization-and-cloud/aws-
certified-developer-associate-guide-second-edition

Learn Linux Shell Scripting – Fundamentals of Bash 4.4 by Sebastiaan
Tammer: https://www.packtpub.com/in/networking-and-servers/learn-
linux-shell-scripting-fundamentals-bash-44

https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/virtualization-and-cloud/aws-certified-developer-associate-guide-second-edition
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44
https://www.packtpub.com/in/networking-and-servers/learn-linux-shell-scripting-fundamentals-bash-44

Assessments

Chapter 1: Introducing the GitLab
Architecture

It was developed by Dimitri Zaporozhets with the help of Valery Sizov in 2011.1.
The company is funded by venture capital.2.
It is mainly developed in Ruby, with some components in Golang, and JavaScript3.
is used in the frontend.
GitLab Community Edition carries the open source MIT License; GitLab4.
Enterprise edition uses a proprietary one.
Open source is one of GitLab's core values. The core product (GitLab CE) is5.
exactly that, and the Enterprise Edition is based on the CE core, but has extra
functionality, the development of which is paid for by the proprietary license.
Unicorn, Sidekiq, NGINX, Gitaly, database, Redis and GitLab Workhorse.6.
One.7.
Key-value pairs, which have five different datatypes.8.
A shared NFS filesystem.9.
GCP.10.

Chapter 2: Installing GitLab
Using the Omnibus-GitLab installer1.
TCP port 22, 80 and 4432.
Ubuntu, Debian, CentOS/Red Hat, openSuse and Raspbian3.
gitlab-ctl4.
2.9.55.
The pg_trgm extension6.

Assessments

[544]

gitlab/gitlab-ce7.
/srv8.
Python9.
Using Helm charts10.

Chapter 3: Configuring GitLab Using the
Web UI

The tool icon1.
Users, projects, and groups2.
1 MB3.
InfluxDB and Prometheus4.
CodeSandbox5.
PlantUML6.
Circuit breaker7.
Git housekeeping8.
AutoDevOps9.
Zero10.

Chapter 4: Configuring GitLab from the
Terminal

Postgresql, repmgr, and consul services1.
/home/git/gitlab/config2.
IMAP3.
Large File Storage4.
Mattermost5.
An Enterprise license6.
Rack Attack7.
kubectl8.

Assessments

[545]

Chapter 5: Importing Your Project from
GitHub to GitLab

Merge request1.
GitHub importer, GitHub token, Gitlab-rake import2.
A GitLab account that uses OAuth-based login in using the GitHub icon, or3.
a GitLab account with an email address that is the same as the public email
address of the GitHub account
OAuth4.
Personal token5.
Repository6.
github_importer and github_importer_advance_stage7.
Via new project dialog8.
import:github9.
Yes10.

Chapter 6: Migrating From CVS
CVS is centralized, Git is decentralized1.
pserver2.
False, CVS uses filesets. 3.
It records a unique SHA for an object.4.
Correct the type and --amend the last commit.5.
No6.
cvs init <location>7.
git init8.
Eric S. Raymond9.
git remote add gitlab url-to-gitlab-repo && git push gitlab10.
master

Assessments

[546]

Chapter 7: Switching from SVN
https://subversion.apache.org/1.
SVN follows a centralized architecture, while Git uses a distributed network.2.
svnserver server plain, svn server through SSH and Apache module dav_svn3.
On the SVN server4.
Revisions5.
Two-way merge6.
>= 1.8.27.
As a local directory, a network share, or via object-storage.8.
One pass migration and mirroring9.
Pushing the new Git repository to GitLab10.

Chapter 8: Moving Repositories from TFS
Collaboration and communication1.
TFVC uses a centralized architecture.2.
ALM (Application Lifecycle Management)3.
Just change the remote and push it to a GitLab project.4.
They are path scoped.5.
On the server6.
Git-svn7.
Chocolatey8.

Chapter 9: GitLab Vision: The Whole
Toolchain in One Application

Software Development Life Cycle1.
172.
19703.
The Chrysler Comprehensive Compensation System (C3) project4.
Must have, Should have, Could have, Would have (the o's mean nothing)5.

https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://subversion.apache.org/

Assessments

[547]

Gent, 20096.
The development side of a project using Agile methodologies7.
Puppet and Chef8.

Chapter 10: Create Your Product, Verify, and
Package it

Manage1.
An issue2.
To evolve an idea3.
/estimate 4d4.
Using protected branches5.
Privileged=true6.
Add the URL to the environment7.
Enable container registry in GitLab8.

Chapter 11: The Release and Configure
Phase

.gitlab-ci.yml1.
A deploy utility2.
To run the whole DevOps cycle from one tool: GitLab3.
In the GitLab registry4.
Clair5.
Auto-deploy6.
Two7.
sitespeed.io8.

Chapter 12: Monitoring with Prometheus
Borgmon1.
Exporters2.
/~/metrics3.

Assessments

[548]

Ruby4.
Set prometheus['enable'] = true in gitlab.rb5.
Static Application Security Testing6.
Dynamic Application Security Testing7.
.gitlab-ci.yml 8.

Chapter 13: Integrating GitLab with CI/CD
Tools

 Project management1.
Atlassian2.
Transition-id3.
Hudson 4.
Plugins5.
Controlling your support environment from a chat channel6.
With a slash command7.
In Settings | Integrations of your project8.

Chapter 14: Setting Up Your Project for
GitLab Continuous Integration

Continuous Integration (CI)1.
.gitlab-ci.yml2.
Via a notification by the source code management system.3.
Unit tests4.
Script tag5.
config.toml6.
No limit; you can specify this in the runner configuration file7.
Enable the built-in Prometheus exporter8.

Assessments

[549]

Chapter 15: Installing and Configuring
GitLab Runners

GitLab CI1.
Pinning the package2.
Golang3.
Hostname4.
Nine5.
--registration-token6.

Chapter 16: Using GitLab Runners with
Docker or Kubernetes

It is more secure and provides a clean build environment1.
docker build -t container:v12.
A Dockerfile3.
Alpine Linux4.
Gitlab Runner Helm chart5.
Change the values in the Helm chart6.

Chapter 17: Autoscaling GitLab CI Runners
Docker Machine1.
Registry proxy and a caching server2.
cache.zip3.
S34.
.gitlab-ci.yml5.
Registry6.

Assessments

[550]

Chapter 18: Monitoring CI Metrics
Scraping1.
A Prometheus exporter2.
- targets:3.
90904.
Running with a higher limit5.
rate6.

Chapter 19: Creating a Basic HA
Architecture by Using Horizontal Scaling

High availability1.
Go2.
Elastic Computing Cloud3.
Three4.
Jinja5.
deploy-with-ansible.sh6.
InService7.
connect_ssh.sh8.

Chapter 20: Managing a Hybrid HA
Environment

Sometimes, there are issues with locking and it scales badly.1.
Sidekiq2.
ansible.tf3.
One4.
Middleware5.

Assessments

[551]

Chapter 21: Making Your Environment Fully
Distributed

Web, API, and Git SSH1.
Four2.
Three3.
Sentinel4.
/-/grafana5.

Chapter 22: Using Geo to Create Distributed
Read-Only Copies of GitLab

Two1.
Modules2.
/etc/gitlab3.
Hashed storage4.
By using a backfill5.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Infrastructure Monitoring with Prometheus
Pedro Araújo, Joel Bastos

ISBN: 978-1-78961-234-9

Grasp monitoring fundamentals and implement them using Prometheus
Discover how to extract metrics from common infrastructure services
Find out how to take full advantage of PromQL
Design a highly available, resilient, and scalable Prometheus stack
Explore the power of Kubernetes Prometheus Operator
Understand concepts such as federation and cross-shard aggregation
Unlock seamless global views and long-term retention in cloud-native apps with
Thanos

https://www.packtpub.com/in/virtualization-and-cloud/hands-infrastructure-monitoring-prometheus

Other Books You May Enjoy

[553]

DevOps with Kubernetes - Second Edition
Hideto Saito, Hui-Chuan Chloe Lee, Cheng-Yang Wu

ISBN: 978-1-78953-399-6

Learn fundamental and advanced DevOps skills and tools
Get a comprehensive understanding of containers
Dockerize an application
Administrate and manage Kubernetes cluster
Extend the cluster functionality with custom resources
Understand Kubernetes network and service mesh
Implement Kubernetes logging and monitoring
Manage Kubernetes services in Amazon Web Services, Google Cloud Platform,
and Microsoft Azure

https://www.packtpub.com/virtualization-and-cloud/devops-kubernetes-second-edition

Other Books You May Enjoy

[554]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.gitlab-ci.yml
 creating 369, 370
 references 370
.yml file
 reference link 68

A
abuse reports, GitLab settings 84
Access Control Lists (ACLs) 456
Agile Manifesto
 about 204
 Crystal method 213, 214
 DSDM model 209
 Royce's model 206, 207
 sashimi model 207, 208
 Scrum framework 212, 213
 V-model 208, 209
 waterfall model 204, 205, 206
Alertmanager
 reference link 443
Amazon Elastic Filesystem (EFS)
 reference link 510
Amazon Machine Image (AMI) 462, 493
Amazon Virtual Private Cloud (Amazon VPC) 456
Amazon Web Services (AWS)
 about 451
 reference link 283
Amazon Web Services Command-Line Interface

(AWS CLI) 400
Ansible 458
Ansible files
 changes 503, 504, 521, 522
Ansible playbooks
 executing 484, 485, 486, 487, 488
Ansible Terraform provider

 installing 458, 459
 reference link 458
Apache JMeter 234
Apache Subversion (SVN) 171
 URL 171
appearance, GitLab settings 88, 89
application component
 application server, for Git SSH 515
 monitoring dashboard, creating with Grafana

501

 monitoring instance, creating 500
 Sidekiq 516
 Sidekiq, splitting from frontend 498
 splitting 514
 splitting, into frontend tiers 498
 splitting, into middleware tiers 498
application server
 Ansible playbooks, executing 484, 485, 486,

487, 488
 contents, of gitlab.rb.j2 482, 483, 484
 for Git SSH 515
 setting up 482
application, GitLab settings 83, 84
ASAP Sidekiq instance
 about 516
 gitlab.rb.sidekiq_asap.j2, contents 517
Auth settings 124, 125, 126
Auto DevOps
 about 289
 code quality scan 292
 configuring 289, 290
 container scanning 292, 293
 dependency scanning 294
 final test step 295, 296
 license management 294, 295
 performance 299, 300
 production 296, 297, 298

[556]

 static application security testing (sast) 295
 step, building 291, 292
AWS Command Line Interface (AWS CLI)
 reference link 237
AWS web console
 reference link 283

B
basic configuration, Kubernetes environment
 about 130
 other settings 131, 132
 outgoing emails, configuring 131
 TLS, configuring 130
bastion host
 preparing 412
 setting up 473
big files
 object storage, using 118, 119
build server 232

C
Caching server 412
Carnegie Mellon University (CMU) 228
Cascading Style Sheets (CSS) 127
centralized 189
changesets
 versus filesets 154
Chef cookbooks 41
Chef Omnibus
 reference link 40
Chrysler Comprehensive Compensation (C3) 214
CI/CD, GitLab settings
 about 97
 Auto Devops settings 97
 container registry 99
 Shared runner settings 98
clair
 reference link 292
Cloud native 36
clustered Redis/Sentinel
 configuring 519
 gitlab.rb.redis-cluster.j2, content 520, 521
Code Climate engines
 reference link 271
CodeSandbox

 reference link 92
command-line options
 reference link 130
Community Edition (CE) 8, 10
Community Enterprise Operating System

(CentOS) 45
Concurrent Versions System (CVS)
 about 152
 versus Git 154
configuration management, tools
 Chef 232
 Puppet 232
Consul 27
consul nodes
 configuring 477
 contents, of gitlab.rb.consul.j2 477, 478
Consul tool 28
Continuous Delivery (CD) 31, 223
Continuous Deployment (CD) 80, 97, 283, 284,

286, 287, 288, 289, 363
Continuous Integration (CI) 8, 29, 31, 80, 97, 270,

427

continuous processes, Extreme Programming (XP)
 continuous integration 222, 223
 refactoring 223
 short iterations 224
Crystal method 213, 214
cucumber 234
CVS, to Git
 conversion preparing, cvs-fast-export used 162,

163, 164
 conversion preparing, cvs2git used 164
 conversion, executing 165
 data converting, cvs-fast-export used 165, 166
 data converting, cvs2git used 167, 168
 migration, cleaning up 168, 169
 repositories, migrating 161
CVS, versus Git
 about 153
 atomic operations 157
 binary blobs 158, 159
 central repository 160
 commits, amending 159, 160
 file renames, detecting 161
 filesets, versus changesets 154

[557]

 Git branching 155, 156
 keyword substitution 157, 158
 merge-before-commit 161
 object naming 157
 referencing versions 157
 repositories, creating 156
 toolset, accompanying 160
cvs-fast-export
 URL, for downloading 166

D
data model
 reference link 26
database nodes
 configuring 474
 consul nodes, configuring 477
 contents, of gitlab.rb.postgres.j2 template 474,

475, 476
 PgBouncer node, configuring 478
database replicas
 gitlab.rb.primary.j2, contents 536, 537
 preparing 535
database
 PostgreSQL, debugging 29
decentralized 189
dependency
 checking 320, 321, 322, 323, 324
deploy keys, GitLab settings 87
DevOps lifecycle phases
 Agile Downstream 229
 Agile Upstream 229
DevOps movement
 4 Quadrant model 228
 about 226, 227
 four levels of competence 230, 231
 history 227, 228
DevOps phase, Create
 about 256
 groups 256, 257
 merge requests 265, 266, 267, 269, 270
 projects 257, 258, 259
 snippets 260
 Web IDE 261
 Wiki 261, 262, 263
DevOps phase, managing

 about 239
 cycle analytics 239, 240
DevOps phase, Package
 about 278
 GitLab container registry 278, 280
DevOps phase, Plan
 about 241
 discussion 243, 244, 245
 epics 248, 249
 issues 241
 milestones 246, 247
 Project Issue board 252, 253, 254, 255
 quick action 251
 time tracking 249, 250, 251
 todos 255, 256
DevOps phase, Verify
 about 270
 Code Quality reports 271, 272, 273
 Review apps 273, 274, 275, 276, 277, 278
DevOps, tools
 build server 232
 configuration management 232
 pipeline orchestration 234
 source code repository 231
 test automation 233
 virtual infrastructure 233
Digital Ocean
 about 73
 droplets, creating 73, 74, 75
Disaster Recovery (DR) 27
Distributed Replicated Block Device (DRBD) 510
Docker Compose
 installation link 66
 used, for installing GitLab 66, 67
 used, for updating GitLab 67
Docker Engine & Docker Compose
 installation link 61
Docker Machine executor 436
Docker Machine-based Runner
 bastion host, preparing 412
 Docker Machine, installing 413, 414
 environment, setting up 412
 GitLab Runner software, deploying 412, 413
Docker Machine
 about 412

[558]

 installing 413, 414
Docker registry proxy 412
Docker
 image, executing 62, 63
 URL 33
 using 61
Dockerized GitLab Runner
 creating 395, 396, 398, 399, 400, 401
don't-repeat-yourself (DRY) programming 12
doorkeeper-gem
 reference link 84
dpl tool
 reference link 285
droplets
 about 73
 creating, on Digital Ocean 73, 74, 75
DSDM model
 about 209
 MoSCoW 211
 phases 210
 timeboxing 210, 211
Dynamic Application Security Testing (DAST) 302,

317, 319, 320
dynamic inventory 458
Dynamic Systems Development Method (DSDM)

204

E
Elastic compute cloud (EC2) 455
Enterprise Edition (EE) 8, 122
environment variables
 reference link 65
epic 248
eventmanager-documentation 273
executors 35
extra customization 128
Extreme Programming (XP), program's code
 about 224
 coding standards 225
 design 225
 shared understanding 224
 system metaphor 225
Extreme Programming (XP)
 about 30, 203, 214
 continuous processes 222

 fine scale feedback 214

F
filesets
 versus changesets 154
Filesystem Consistency Check (fsck) 96
Filesystem Hierarchy Standard (FHS) 62
fine scale feedback, practices
 about 214
 iteration planning 218
 pair programming 219, 220
 planning game 215
 release planning 215
 Test Driven Development (TDD) 220, 221, 222
Fully Qualified Domain Name (FQDN) 456

G
Gemnasium 322
general menu option, GitLab settings
 about 107
 avatar 108
 merge request 109
 naming 108
 permissions 109
 project features 109
 topics 108
 visibility 109
general process metrics
 about 438
 alert management 443, 445, 446, 447
 key metrics 439, 440, 441, 442, 443
General Public License (GPL) 45, 152
general settings, GitLab settings
 account and limit 90
 diff limit 90
 external authentication 92
 privacy policy 92
 sign-in restrictions 91, 92
 sign-up restrictions 90
 terms of service 92
 visibility and access controls 89, 90
 Web IDE 92
 web terminal 92
Geo, GitLab settings 86
Geo

[559]

 database replicas, preparing 535
 GitLab software, installing 534
 gitlab.rb.j2, contents 535
 license 534
 secondary node, adding via web UI 538, 539
 setting up 534
 SSH key lookup method, modifying to database

538

Git LFS
 installation link 177
 reference link 118
Git SSH
 application server 515
 gitlab.rb.frontend_ssh.j2, contents 515, 516
Git-over-SSH 69
git-tfs binaries
 download link 194
git-tfs migration tool
 reference link 194
git-tfs tool
 about 193
 migration, preparing 194, 195, 196, 198, 199,

200

Git
 versus Concurrent Versions System (CVS) 154
 versus Team Foundation Server (TFS) 188
Gitaly
 about 22, 23
 debugging 24
 reference link 23
GitHub integration feature
 import, executing 141, 142, 143, 144
 preparing, for export 137, 138, 140
 preparing, for import 140
 using 136, 137
GitHub token
 import, executing 146, 147, 148
 preparing, for export 144, 145, 146
 using 144
GitLab 12
 reference link 44
GitLab app settings
 about 114, 115, 116, 117
 big files, storing 117
GitLab application server

 GitLab Monitor 306
 Metrics exporter 304
 node exporter 307
 Postgres exporter 306
 Prometheus, setting up 307, 308
 Redis exporter 306
GitLab ChatOps
 reference link 354
GitLab CI settings 123, 124
GitLab CI
 about 29, 30
 pipelines and jobs 31, 32
GitLab Docker containers
 reconfiguring 129
GitLab Enterprise Edition
 reference link 404
GitLab Helm chart
 about 69, 70
 Bonus material 69
 Core GitLab components 69, 70
 deploying, to Kubernetes 70
 deployment, monitoring 71
 Extra optional dependencies 69
 initial login 71
GitLab installation
 configuring, from terminal 113
GitLab issue
 reference link 44
GitLab module
 about 530
 main module file 530, 532
 outputs, defining 533, 534
 variable file 532, 533
GitLab Monitor
 about 306
 database 306
 Git 306
 process 306
GitLab pages
 about 120
 reference link 120
GitLab rake task
 import, executing 148, 149, 150
 preparing, for import 148
 using 148

[560]

GitLab Redis
 configuration 480
 contents, of gitlab.rb.redis.j2 480, 481
GitLab Registry 122, 123
GitLab Runner client architecture 376, 377, 378,

379, 393, 394, 410, 412
GitLab Runner configuration file
 editing 428, 429, 430, 431, 432
GitLab Runner Helm chart
 about 68
 GitLab Runner, deploying to Kubernetes 69
GitLab Runner software
 deploying 412, 413
GitLab Runner, executors
 autoscaling Docker SSH 35
 Docker-based executor 35
 Kubernetes 35
 shell executor 35
GitLab Runner, on Linux
 installed runner binary, updating 383
 installing 380
 manual installation, using 382
 package manager, using 380, 381, 382
GitLab Runner, on Mac
 Homebrew package manager, used for installing

384

 installed runner binary, updating 385
 installing 383
 manual installation, using 384
GitLab Runner, on Windows
 installing 385, 386
GitLab Runner
 about 32, 232
 built-in caching 415
 cache globally, setting 415
 cache, setting at project level 415, 416
 configuring 370, 371, 414
 creating, with shell executor 379, 380
 deploying, Kubernetes cluster used 404, 405,

406, 407, 408
 deploying, prebuilt Docker container used 401,

402, 403
 distributed container registry mirroring 416, 417
 Docker machines, used on Amazon Web

Services (EC2) 421, 422, 423

 Docker machines, used with local VirtualBox
instance 420, 421

 features 371, 372, 373, 374
 Go, switching 33, 34, 35
 monitoring components, enabling for 426, 427,

428

 off-peak time mode configuration 414, 415
 old runner, issues 33
 proxy container registry, executing 417
 proxy container registry, installing 417
 registering 386
 registering, in interactive way 386, 387
 registering, in non-interactive way 387
 scaling 420
 server, caching 417
 version, executing 389
GitLab settings
 configuring, at group level 105, 106
 configuring, at instance level 79
 configuring, at project level 107
GitLab Shell
 about 18
 debugging 18, 19, 20
 reference link 18
GitLab workflow 238, 239
GitLab Workhorse
 about 25
 debugging 25, 26
 reference link 25
GitLab, broader audience via Hacker News
 reference link 9
GitLab, core system components
 about 11, 12
 database 26, 27, 28
 Gitaly 22, 23
 GitLab Shell 18
 GitLab Workhorse 25
 NGINX 12
 Redis 20
 Sidekiq 15
 Unicorn 13
GitLab, Debian 10
 advanced features, activating 57
 database, initializing 57
 frontend, preparing 58

[561]

 Gitaly, installing 56, 57
 GitLab-Workhorse, installing 56
 GitLabShell, installing 56
 installing 53, 54, 55
 NGINX 60, 61
 programming languages, need for 47
 Redis memory database 52
 software packages, need for 46, 47
 SQL database 50, 51
 system users 49
 system, preparing 57, 58
GitLab, frontend
 assets, compiling 59
 GetText PO files, compiling 58
 GitLab instance 59
GitLab, programming languages
 Golang (Go) 48
 Node 48
 Ruby 47, 48
gitlab-grack
 reference link 25
gitlab.rb.consul.j2
 contents 477, 478
gitlab.rb.gitaly.j2 file
 contents 502, 503
gitlab.rb.grafana.j2
 contents 502
gitlab.rb.j2
 contents 482, 483, 484
gitlab.rb.pgbouncer.j2
 contents 478, 479
gitlab.rb.postgres.j2 template
 contents 474, 475, 476
gitlab.rb.prometheus.j2
 contents 501
gitlab.rb.redis.j2
 contents 480, 481
gitlab.rb
 reference link 113
gitlab.yaml file
 reference link 72
GitLab
 changing, in Kubernetes environment 130
 editions, exploring 10
 features 10

 HA architecture 525
 installing, Docker Compose used 66, 67
 installing, Omnibus packages used 40
 installing, on Debian 10 45
 Jenkins, connecting 334, 335, 336, 337, 338,

339, 340, 341, 342, 343
 Jira, used 327, 328, 329, 330, 333, 334
 origins 9, 10
 reference link 36
 source, executing 44
 uninstalling, Helm chart used 73
 updating, Docker Compose used 67
 updating, Helm chart used 72
 URL 9
Global Shared Deploy keys 87
Globally Recognized Avatar 121
Golang (Go) version
 download link 48
Google Cloud Platform (GCP) 36
Google Cloud
 reference link 283
Google Kubernetes Engine (GKE) 72, 283
Gravatar 121

H
HA architecture, GitLab 525
HA configuration
 reference link 510
Helm
 about 68
 reference link 40
high availability (HA), Amazon services
 about 455
 Amazon Virtual Private Cloud (Amazon VPC)

456

 classic load balancer 456
 Elastic compute cloud (EC2) 455
 Security Groups (SGs) 456
 subnets 456
 Terraform 457
high availability (HA), code
 ansible_host.tf 463, 464
 keypair.tf 467, 468
 lb.tf 468, 469
 providers.tf 470

[562]

 route_table.tf 465
 security_group.tf 465
 subnet.tf 461, 462, 463
 variable.tf 466
 vpc.tf 460, 461
high availability (HA)
 about 113, 453, 492, 507
 Ansible 458
 Ansible Terraform provider, installing 458, 459
 architecture 453, 454, 455, 491, 508, 509, 510
 deployment, running 471, 472, 473
 Terraform, executing to deploy virtual hardware

470

 working, with code 459, 460

I
image
 container, debugging 66
 container, initiating with configuration settings as

input 64, 65
 executing 62, 63
 GitLab CE, executing on IP address 66
 GitLab, configuring 63, 64
 GitLab, upgrading 65
images, Docker Hub
 reference link 401
import repositories
 reference link 193
InfluxDB configuration
 reference link 100
Integrated Development Environments (IDEs) 188
integrations, GitLab settings
 about 93
 Elasticsearch 93, 94
 PlantUML 94
 snowplow 95
 third-party offers 94
intellectual property rights (IP) 294
Internet Relay Chat (IRC) 61
issue, attributes
 meta information 243
issues, attributes
 content 241
 meta information 242
 status 241

iteration planning, planning game
 commitment phase 218
 exploration phase 218
 steering phase 218, 219

J
Jenkins container
 reference link 335
Jenkins
 about 232
 connecting, to GitLab 334, 335, 336, 337, 338,

339, 340, 341, 342, 343
Jira
 used, with GitLab 327, 328, 329, 330, 333, 334
jobs 368, 369

K
Keep It Short and Simple (KISS) principle 225
Key Performance Indicator (KPI) 226, 239
kubectl
 reference link 40
Kubernetes cluster
 used, to deploy GitLab Runner 404, 405, 406,

407, 408
Kubernetes environment
 GitLab, changing 130
Kubernetes, GitLab settings 86
Kubernetes
 about 68, 234
 droplets, creating on Digital Ocean 73
 GitLab Helm chart 69, 70
 GitLab Runner Helm chart 68
 URL 33
 used, for deploying 68

L
Large File Storage (LFS) 25, 118
LDAP interface 124
Let's Encrypt
 URL 43
Libreavatar
 reference link 121
license, GitLab settings 85
Lightweight Directory Access Protocol (LDAP) 10,

115

[563]

M
Mattermost
 about 121
 integrating with 344, 345, 346, 347, 348, 349,

350, 351, 352, 353, 354
menu options, GitLab settings
 about 80
 Dashboard 80
 Gitaly server 80
 groups 80
 jobs 80
 projects 80
 runners 80
 users 80
merge-before-commit 161
Mesos 234
messages, GitLab settings 81
metrics, GitLab settings
 about 100
 Influx 100
 Prometheus 100
MinIO server
 creating 419, 420
Monaco editor
 reference link 261
monitoring components
 enabling, for GitLab Runner 426, 427, 428
monitoring dashboard
 creating, with Grafana 501
 gitlab.rb.grafana.j2, contents 501
monitoring instance
 creating 500
 gitlab.rb.prometheus.j2, contents 500
monitoring scripts
 customizing 311, 312, 313
monitoring section, GitLab settings
 about 80
 audit log 81
 background jobs 80
 health check 80
 logs 80
 request profile 81
 system info 80
MoSCoW 211

N
Network File System (NFS) 22, 95, 453, 490
network, GitLab settings
 about 102
 Geo 102
 IP rate limits 102
 outbound requests 102
 performance optimization 102
 user rate limits 102
nfs_exports.j2
 contents 482
NGINX
 about 12, 60
 debugging 12, 13
Node.js
 reference link 48

O
object storage
 using 118, 119
Omnibus packages, structure
 about 40, 41
 Chef components 41
 GitLab configuration template 41
 gitlab-ctl commands 42
 project, defining 41
 runit recipe 42
 software definition 41
 tests 42
Omnibus packages
 external URL and login, browsing 44
 installer, executing 43
 omnibus-gitlab package, upgrading 44
 used, for installing GitLab 40
omnibus-gitlab installer
 reference link 42
Omnibus
 configuring, from terminal 113
Open Authorization (OAuth) 83
open core 10
Out-of-Memory (OOM) Killer 14
outgoing email 72
OWASP Web Malware Scanner
 URL 320

[564]

OWASP ZAProxy
 reference link 318

P
PgBouncer node
 configuring 478
 contents, of gitlab.rb.pgbouncer.j2 478, 479
pgbouncer proxy 454
pipeline orchestration, tools
 Kubernetes 234
 Mesos 234
pipelines 363, 364, 365, 366, 367, 368
PostgreSQL, log messages
 reference link 29
PostgreSQL
 debugging 29
prebuilt Docker container
 used, for deploying GitLab Runner 401, 402,

403

preferences, GitLab settings
 about 102
 email 102
 Gitaly 105
 help page 103, 104
 localization 105
 pages 104
 real-time features 105
profiling, GitLab settings
 about 100
 performance bar 101
 Pseudonymizer data collection 101
 usage statistics 101
Prometheus, security model
 reference link 309
Prometheus
 external dashboard link, enabling 311
 external host, using 309, 310
 reference link 303
 scalability 303
 setting up 303, 304, 305, 306, 307, 308
 usability 303
proxy container registry
 about 417
 executing 417
 installing 417

push rules, GitLab settings 86
Python Package Manager (PIP) 400

Q
Quality Assurance (QA) process 222

R
Rack Attack 128, 129
Rack HTTP server 13
Rack
 reference link 13
RCS 152
Red Hat Enterprise Linux (RHEL) 45
Redis exporter
 reference link 306
Redis, data structures
 hash 21
 list 21
 set 22
 sorted set 22
 string 21
Redis
 about 20
 data operations 20, 21
 installation link 20
release planning, planning game
 commitment phase 216
 exploration phase 215
 steering phase 217
Remote Procedure Call (RPC) 22, 492
remote shell (rsh) 154
reporting, GitLab settings
 about 99
 abuse report 99
 error reporting 100
 logging 100
 spam and anti-bot protection 99
repository, GitLab settings
 about 95
 repository maintenance 96, 97
 repository mirror 95
 repository storage 95
Role Based Access Control (RBAC) 131
Royce's model 206, 207
runit

[565]

 reference link 42
Runner business logic metrics
 about 433
 key metrics 433, 434, 436, 437, 438

S
S3 bucket
 creating, in Amazon Web Services 418
sashimi model 207, 208
Schedules 365
script enhancement 504, 522
Scrum framework 212, 213
secondary node, adding via web UI
 about 538, 539
 hashed storage, activating 539, 540
 secondary node status, checking 541
Security Groups (SGs) 456
security vulnerabilities
 static analysis 313, 314, 317
Selenium 233
Sentry
 reference link 100
server
 caching 417, 418
service templates, GitLab settings 87
settings, GitLab settings
 about 89
 general setting 89
SG-backendservers 454
SG-frontendservers 454, 455
SG-loadbalancer 454
shared filesystem
 connecting 481, 502
 contents, of nfs_exports.j2 482
 gitlab.rb.gitaly.j2 file, contents 502, 503
Sidekiq
 about 15, 122, 516
 ASAP Sidekiq instance 516
 debugging 16
 errors 17
 GitLab Registry 122, 123
 gitlab.rb.middleware.j2, contents 498, 499, 500
 gitlab.sidekiq.pipeline.j2, contents 519
 gitlab.sidekiq.realtime.j2, content 518
 normal instance 519

 pipeline instance 518
 process 16, 17
 processes 16
 real-time instance 517
 reference link 15
 splitting, from frontend 498
sitespeed.io container
 reference link 299
Software Development Lifecycle (SDLC) 228
Software Development Methodology (SDM) model

209

source code repository 231
source installation
 advanced settings 126, 127, 128
 Auth settings 124, 125, 126
 configuring 114
 GitLab app settings 114, 115, 116, 117
 GitLab CI settings 123, 124
 GitLab pages 120
 Gravatar 121
 Mattermost 121
 Rack Attack 128, 129
 Sidekiq 122
Static Application Security Testing (SAST) 313,

321

SubGit tool
 URL 178
SVN, and Git
 access control 173
 Apache web server, with module dav_svn 173
 binaries, handling 176, 178
 branching 175, 176
 conversion 182
 difference between 172
 mirroring 178, 179, 180, 181, 182
 references 174, 175
 security 173
 space requisites 174, 175
 svnserver server 172
 svnserver traffic, through SSH 173
svn2git
 reference link 183
 used, for migration 183, 184, 185
system hooks, GitLab settings
 about 82

 plugins 83

T
Team Foundation Server (TFS)
 features 188
 versus Git 188
Team Foundation Version Control (TFVC)
 about 188
 capacity, branching 190
 capacity, merging 190
 changes, handling 189
 file handling 192, 193
 history 191
 traceability 192
templates, GitLab settings 97
Terraform configuration
 about 493, 510
 ansible_host.tf 495, 496, 497, 512, 513, 514
 instance.tf 493, 494, 510, 512
Terraform
 about 457
 download link 457
 executing, to deploy virtual hardware 470
 GitLab module 530
 infrastructure, preparing 526, 527
 installing 457
 keypair module, outputs 530
 keypair module, utilizing 529
 keypair module, variables 530
 main.tf module 528, 529
test automation, tools
 Apache JMeter 234
 cucumber 234
 Selenium 233
Test Driven Development (TDD) 220
test-driven development (TDD) 214

Tiller 68
timeboxing 210, 211
Tom's Obvious Minimal Language (TOML) 24
toolchain 231, 235
Transmission Control Protocol (TCP) 52, 456

U
Unicorn
 about 13
 debugging 13
 errors 14
 logs, timeouts 13
 processes 14
User Datagram Protocol (UDP) 100

V
V-model 208, 209
Version Control System (VCS) 188
virtual infrastructure 233
Virtual Machine (VM) 34
Virtual Private Cloud (VPC) 454

W
waterfall model 204, 205, 206
Web IDE 92
webhooks
 reference link 93
 used, for events 354, 356, 357, 358, 359
Wiki
 protected branches 263, 264
Write Ahead Logging (WAL) 475

Y
YAML Ain't Markup Language (YAML) 370
Yarn
 reference link 49

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Install and Set Up GitLab On-Premises or in the Cloud
	Chapter 1: Introducing the GitLab Architecture
	Technical requirements
	The origins of GitLab
	Exploring GitLab editions – CE and EE
	The core system components of GitLab
	NGINX
	Debugging NGINX

	Unicorn
	Debugging Unicorn
	Timeouts in Unicorn logs
	Unicorn processes disappear
	Other kinds of errors or 100% CPU load

	Sidekiq
	Debugging Sidekiq
	Sidekiq processes disappear
	A Sidekiq process is seemingly doing nothing
	Other kind of errors or 100% CPU load

	GitLab Shell
	Debugging GitLab Shell

	Redis
	Basic data operations in Redis

	Gitaly
	Debugging Gitaly

	GitLab Workhorse
	Debugging GitLab Workhorse

	Database
	Debugging PostgreSQL

	GitLab CI
	Pipelines and jobs

	GitLab Runners
	Issues with the old runner
	Switching to Go

	Cloud native
	Summary
	Questions
	Further reading

	Chapter 2: Installing GitLab
	Technical requirements
	Installing GitLab using omnibus packages
	Omnibus structure
	Project definition
	Individual software definitions
	A GitLab configuration template
	Chef components
	Runit recipe
	Tests
	gitlab-ctl commands

	Running the installer
	Browsing to the external URL and login
	Upgrade using the omnibus-gitlab package

	Running from source
	Operating system – Debian 10
	Required basic software packages
	Required programming languages
	Ruby
	Go
	Node.js

	System users
	SQL database
	Redis memory database
	GitLab
	Installing GitLab Shell
	Installing GitLab-Workhorse
	Installing Gitaly
	Initializing the database and activating advanced features
	Final steps for preparing the system
	Preparing to serve
	Compiling GetText PO files
	Compiling assets
	Starting your GitLab instance

	NGINX

	Using it from Docker
	Running the image directly
	Configuring GitLab after startup
	Starting the container with configuration settings as input
	Upgrading GitLab
	Run GitLab CE on a different IP address
	Debugging the container

	Install GitLab using Docker Compose
	Updating GitLab using Docker Compose

	Deploying GitLab using Kubernetes
	GitLab Runner Helm chart
	Deploying of a GitLab Runner to Kubernetes

	GitLab Helm chart
	Deploying GitLab to Kubernetes
	Monitoring the deployment
	Initial login
	Outgoing email
	Updating GitLab using the Helm chart
	Uninstalling GitLab using the Helm chart

	Creating droplets on DigitalOcean

	Summary
	Questions
	Further reading

	Chapter 3: Configuring GitLab Using the Web UI
	Technical requirements
	Configuring GitLab settings at the instance level
	Menu options
	Monitoring
	Messages
	System hooks
	Plugins

	Applications
	Abuse reports
	License
	Kubernetes
	Push rules
	Geo
	Deploy Keys
	Service templates
	Appearance
	Settings
	General
	Visibility and access controls
	Account and limit
	Diff limits
	Sign-up restrictions
	Sign-in restrictions
	Terms of service and privacy policy
	External authentication
	Web Terminal
	Web IDE

	Integrations
	Elasticsearch
	PlantUML
	Third-party offers
	Snowplow

	Repository
	Repository mirror
	Repository storage
	Repository maintenance

	Templates
	CI/CD
	Auto DevOps settings
	Shared runner settings
	Container registry

	Reporting
	Spam and anti-bot protection
	Abuse reports
	Error reporting and logging

	Metrics and profiling
	Metrics – InfluxDB
	Metrics – Prometheus
	Profiling – Performance Bar
	Usage statistics
	Pseudonymizer data collection

	Network
	Performance optimization
	User and IP rate limits
	Outbound requests
	Geo

	Preferences
	Email
	Help page
	Pages
	Real-time features
	Gitaly
	Localization

	Configuring GitLab settings at the group level
	Configuring GitLab settings at the project level
	General
	Naming, topics, avatar
	Visibility, project features, permissions
	Merge requests

	Summary
	Questions
	Further reading

	Chapter 4: Configuring GitLab from the Terminal
	Technical requirements
	Configuring omnibus and GitLab installations from the terminal
	Configuring source installations
	GitLab app settings
	Storing big files
	Using object storage

	GitLab pages
	Mattermost
	Gravatar
	Sidekiq
	GitLab Registry

	GitLab CI settings
	Auth settings
	Advanced settings
	Rack Attack

	Reconfiguring GitLab Docker containers
	Changing GitLab in a Kubernetes environment
	Basic configuration
	Configuring TLS
	Configuring outgoing emails
	Other settings

	Summary
	Questions
	Further reading

	Section 2: Migrating Data from Different Locations
	Chapter 5: Importing Your Project from GitHub to GitLab
	Technical requirements
	Using the GitHub integration feature
	Preparing GitHub for export
	Preparing GitLab for import
	Running the import

	Using a GitHub token
	Preparing GitHub for export
	Running the import

	Using a GitLab rake task
	Preparing GitLab for import
	Running the import

	Summary
	Questions
	Further reading

	Chapter 6: Migrating from CVS
	Technical requirements
	CVS versus Git
	Filesets versus changesets
	Git branching
	Creating repositories
	Atomic operations
	Object naming or referencing versions
	Keyword substitution
	Binary blobs
	Amending commits
	A central repository
	Accompanying toolset
	Detecting file renames
	Commit before merge

	Preparing to migrate from CVS to Git
	Preparing for a conversion using cvs-fast-export
	Preparing for a conversion using cvs2git

	Running the conversion
	Converting data using cvs-fast-export
	Converting data using cvs2git

	Cleaning up after migration
	Summary
	Questions
	Further reading

	Chapter 7: Switching from SVN
	Technical requirements
	The difference between SVN and Git
	Security and access control
	Space requirements and references
	Branching
	Handling binaries with SVN and Git

	Mirroring SVN and GIT
	No sync, just convert

	Using svn2git to migrate in one cut
	Summary
	Questions
	Further reading

	Chapter 8: Moving Repositories from TFS
	Technical requirements
	TFS versus Git
	Centralized or decentralized
	Handling changes
	Branching and merging capacity
	History
	Traceability
	File handling

	The git-tfs tool
	Preparing to migrate

	Summary
	Questions
	Further reading

	Section 3: Implement the GitLab DevOps Workflow
	Chapter 9: GitLab Vision - the Whole Toolchain in One Application
	Technical requirements
	The Agile Manifesto
	The initial model – waterfall
	Royce's model
	The sashimi model
	The V-model
	DSDM
	Timeboxing
	MoSCoW

	Scrum
	Crystal methods

	XP
	Fine-scale feedback
	Planning game
	Release planning
	Iteration planning

	Pair programming
	Test Driven Development

	Continuous processes
	Continuous integration
	Refactoring
	Short iterations

	Everybody owns the code
	Shared understanding
	Coding standards
	Simple design
	System metaphor

	The DevOps movement
	History of the movement
	Four Quadrant Model
	Four levels of competence

	The toolchain
	Summary
	Questions
	Further reading

	Chapter 10 Create Your Product, Verify, and Package it
	Technical requirements
	The GitLab workflow
	DevOps phase – manage your ideas
	Cycle analytics

	DevOps phase – plan your feature
	Issues
	Content
	Status of the issue
	Meta information

	Discussions
	Milestones
	Epics
	Time tracking
	Quick actions
	The Project Issue board
	Todos

	DevOps phase – create it
	Projects and groups
	Snippets
	Web IDE
	Wiki
	Protected branches

	Merge requests

	DevOps phase – verify your product
	Code Quality reports
	Review apps

	DevOps phase – package it for use
	GitLab container registry

	Summary
	Questions
	Further reading

	Chapter 11: The Release and Configure Phase
	Technical requirements
	Continuous Deployment
	Auto DevOps
	Configuring Auto DevOps
	Build step
	Code quality scan
	Container scanning
	Dependency scanning
	License management
	Static application security testing (sast)
	The final test step
	Production
	Performance

	Summary
	Questions
	Further reading

	Chapter 12: Monitoring with Prometheus
	Technical requirements
	Setting up Prometheus
	Using an external Prometheus host
	Enabling the external dashboard link

	Customizing monitoring
	The static analysis of security vulnerabilities
	Dynamic Application Security Testing
	Dependency checking
	Summary
	Questions
	Further reading

	Chapter 13: Integrating GitLab with CI/CD Tools
	Technical requirements
	Using Jira with GitLab
	Connecting Jenkins to GitLab
	Integrating with Mattermost
	Using webhooks for events
	Summary
	Questions
	Further reading

	Section 4: Utilize GitLab CI and CI Runners
	Chapter 14: Setting Up Your Project for GitLab Continuous Integration
	Technical requirements
	Pipelines
	Jobs
	Creating .gitlab-ci.yml
	Configuring a runner
	GitLab Runner features

	Summary
	Questions
	Further reading

	Chapter 15: Installing and Configuring GitLab Runners
	Technical requirements
	The Runner client architecture
	Basic architecture

	Creating a basic Runner with the shell executor
	Installing Runner on Linux
	Using a package manager
	Using a manual installation
	Updating a manually installed runner binary

	Installing on Mac
	The manual way of installing a runner
	Installing and using the Homebrew package manager
	Updating a manually installed runner binary

	Installing on Windows
	Registering a runner
	The interactive way of registering a runner
	The non-interactive way of registering a runner

	Running the nightly version

	Summary
	Questions
	Further reading

	Chapter 16: Using GitLab Runners with Docker or Kubernetes
	Technical requirements
	Runner client architecture
	Creating your own Dockerized GitLab Runner
	Using a prebuilt Docker container to deploy GitLab Runners
	Using a Kubernetes cluster to spawn GitLab Runners
	Summary
	Questions
	Further reading

	Chapter 17: Autoscaling GitLab CI Runners
	Technical requirements
	Runner client architecture
	Setting up the environment
	Preparing a bastion host
	Deploying the GitLab Runner software
	Installing Docker Machine

	Configuring the Runner
	Off-peak time mode configuration
	Distributed runners caching
	Setting the cache globally
	Setting the cache at the project level

	Distributed container registry mirroring
	Installing and running a proxy container registry and a caching server
	Proxy container registry
	Caching server
	Creating an S3 bucket in Amazon Web Services
	Creating your own MinIO server

	Scaling your runners
	Using Docker Machines with a local VirtualBox instance
	Using docker machines that have been created on Amazon Web Services (EC2)

	Summary
	Questions
	Further reading

	Chapter 18: Monitoring CI Metrics
	Technical requirements
	Enabling monitoring for Runners
	Editing the GitLab Runner configuration file
	Runner business logic metrics
	Key metrics to watch

	General process metrics
	Key metrics to watch
	Alert management

	Summary
	Questions
	Further reading

	Section 5: Scale the Server Infrastructure (High Availability Setup)
	Chapter 19: Creating a Basic HA Architecture Using Horizontal Scaling
	Technical requirements
	The underlying architecture of this solution
	Amazon services
	Elastic compute cloud (EC2)
	Classic load balancer
	Virtual private cloud and subnets
	SGs

	Terraform
	Installing Terraform

	Ansible
	Installing the Ansible Terraform provider
	Starting with the code
	vpc.tf
	subnet.tf
	instance.tf
	ansible_host.tf
	route_table.tf
	security_group.tf
	variable.tf
	keypair.tf
	lb.tf
	providers.tf

	Preparing to run Terraform to deploy the virtual hardware
	Running the deployment

	Setting up the bastion hosts
	Configuring the database nodes
	Contents of the gitlab.rb.postgres.j2 template
	Configuring the consul nodes
	Contents of gitlab.rb.consul.j2

	Configuring the PgBouncer node
	Contents of gitlab.rb.pgbouncer.j2

	The Redis configuration
	Contents of gitlab.rb.redis.j2

	Connecting the shared filesystem
	Contents of nfs_exports.j2

	Setting up the application servers
	Contents of gitlab.rb.j2
	Running all the Ansible playbooks

	Summary
	 Questions
	 Further reading

	Chapter 20: Managing a Hybrid HA Environment
	Technical requirements
	The basic architecture of this solution
	A renewed Terraform configuration
	instance.tf
	ansible_host.tf

	Splitting application components into frontend and middleware tiers
	Splitting Sidekiq from the frontend
	Contents of gitlab.rb.middleware.j2

	Creating a monitoring instance
	Contents of gitlab.rb.prometheus.j2

	Creating a monitoring dashboard with Grafana
	Contents of gitlab.rb.grafana.j2

	Connecting the shared filesystem
	Contents of the gitlab.rb.gitaly.j2 file

	Changes in Ansible files
	Script enhancements
	Summary
	Questions
	Further reading

	Chapter 21: Making Your Environment Fully Distributed
	Technical requirements
	The basic architecture of this solution
	Performing changes to the Terraform configuration
	instance.tf
	ansible_host.tf

	Splitting more application components
	The third application server for Git SSH
	Contents of gitlab.rb.frontend_ssh.j2

	The middleware layer – Sidekiq
	The ASAP Sidekiq instance
	Contents of gitlab.rb.sidekiq_asap.j2

	The real-time Sidekiq instance
	Contents of gitlab.sidekiq.realtime.j2
	The pipeline Sidekiq instance
	Contents of gitlab.sidekiq.pipeline.j2
	The normal Sidekiq instance

	The clustered Redis/Sentinel configuration
	Contents of gitlab.rb.redis-cluster.j2

	Changes in Ansible files
	Script enhancements
	Summary
	Questions
	Further reading

	Chapter 22: Using Geo to Create Distributed Read-Only Copies of GitLab
	Technical requirements
	The basic architecture of this solution
	Preparing the infrastructure
	The root module explained – main.tf
	Utilizing the keypair module – modules/services/keypair/main.tf
	Variables for the keypair module – modules/services/keypair/vars.tf
	Outputs from the keypair module – modules/services/keypair/output.tf
	Explaining the GitLab module
	The main module file – modules/services/gitlab/main.tf
	The variable file – modules/services/gitlab/vars.tf
	The outputs for the module – modules/services/gitlab/outputs.tf

	Setting up Geo
	Installing the GitLab software and license
	Contents of gitlab.rb.j2

	Preparing the database replicas
	Contents of gitlab.rb.primary.j2
	Contents of gitlab.rb.primary.j2

	Changing the SSH key lookup method to the database
	Adding the secondary node via the web UI
	Activating hashed storage
	Checking the status of the secondary node

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

